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Abstract

The finite element method was used to solve the nonlinear,
small-disturbance, transonic, velocity-potential equation for problems
of steady flow over a circular cylinder and over a thin-airfoil in a
uniform steady airstream. The governing differential equation is valid
for inviscid, irrotational, isentropic flow of a perfect gas to in-
clude weak shocks providing airflow separation does not occur. For
compressible subsonic and transonic flows the nonlinear small-disturbance
equation was expressed in iterative form as a sequence of linear equa-
tions which was solved iteratively until the difference between two
successive solutions became arbitrarily small. For analysis purposes
the infinite flowfield was replaced by a finite but sufficiently large
domain that was discretized with sector elements for the cylinder pro-
blem and rectangular elements for the airfoil problem. The finite
element equations were obtained from Galerkin's Method of Weighted
Residuals. Boundary conditions of the Neumann type were imposed along
the surface contour of the cylinder and along an approximate boundary
in accordance with classical thin-airfoil theory for the airfoil. For
both problems Dirichlet conditions were imposed along the farfield
boundary from an asymptotic solution which satisfies the actual infinity
condition and is valid in the farfield.

Three sub-problems were investigated for the circular cylinder.
First, three different types of trial functions were investigated to
approximate the solution for the welocity potential function for the

case of incompressible flow without circulation. The three trial

functions were: (1) a trignometric approximation resulting in a
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non-conforming element, (2) a bilinear polynomial (conforming element)
typical of elements used in finite element analyses, and (3) a
rational approximation resulting in a new conforming element. Con-
vergence properties of each element were studied as a function of dis-
cretization refinement (element size). The new element proved to have
superior properties for the problem solved.

The second subproblem for the cylinder was to use the two conform-
ing elements to obtain solutions for incompressible flow with circulation.
Superposition was used to split the total problem into two elementary
component problems. The value of circulation was determined by en-
forcing the stagnation or Kutta condition after each component solution
was found. An optimm way to select and refine the discretization was
discovered to insure that the error in circulation was kept to a
minimum.

The third subproblem for the cylinder was to solve the compressi-
ble flow problem without circulation using the new element. In the
strict sens2, the smali-disturbance equation is not valid for compressi-
ble potential flow over a cylinder; however, the problem is mathematically
welli-posed with its use. The iterative solution scheme converged
rapidly for subsonic flows, but failed to converge for transonic flows
when the supersonic zone engulfed one or more complete elements. Pre-
dictions of the critical Mach number and subsonic velocity distributions
are compared with known results.

Convergence of iterative finite element solution schemes for
transonic (mixed-elliptic-hyperbolic) flows was investigated for the
airfoil problem. An examination was made of the divergence behavior

of solution schemes reported by other investigators who have used
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finite element formulations similar to those used in this study. As a

result of this examination an iterative solution procedure was developed
which permitted convergence of solution schemes for mixed (transonic)
flows. The procedure includes a new '‘upwinding'' technique that accounts
for the proper zone of influence for elements in the supersonic
(hyperbolic) region. Governed by two parameters, the new technique
alters the finite element formulation to exclude the influence of itera-
tive downwind forces on the solution at upwind nodes. The "upwinding"
technique not only "arrests' the divergence behavior of the solution
scheme, but also "'captures' the weak compression shock which forms
automatically without the use of shock elements.

Known results from experimental data, classical solutions, finite
difference solutions, and other finite element solutions are compared
with the finite element solutions obtained in this study. Comparisons
of velocity and pressure distributions are given for cases of incompressi-

ble flow and compressible subsonic and transonic flows.

xii




PREDICTION OF AERODYNAMIC FORCES ON A CIRCULAR CYLINDER

———— e

AND A THIN ATRFOIL IN A TRANSONIC AIRSTREAM

i

BY THE FINITE ELEMENT METHOD

I Introduction

s b Y]

Analysis of transonic flow is one of the most challenging problems

Pk o

P

SR

in potential aerodynamics today due to the nonlinear nature and mixed
character of the flow. Transonic flow may occur with modern aircraft
during flight maneuvers, encounters with atmospheric turbulence or wind
gusts, and during accelerations to supersonic speeds. Many fighter
aircraft, for example, often endure extensive portions of their mission
X profile at transonic speeds. During these periods violent oscillatory
| motion may occur which could pose a hazard to flight. Thus, the need
is evident for accurate and reliable methods of analysis to predict
aerodynamic loads at transonic speeds.
A renewed interest in transonic flow is manifest by the rather
large volume of technical papers that have appeared in the literature
. [ within the last fifteen years. Several methods of analysis have been
developed, but perhaps those most extensively used today are finite
difference methods. The majority of these methods are devoted to two-
dimensional potential flow analysis, although the flow is more complex
in nature. This simplifying position is justifiable to some degree
| since selection of suitable section shapes has always been one of the

stages in the design process for aircraft wings and helicopter blades.
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For design purposes, and for many other problems of engineering

interest, the flow about a body may be adequately described by potential
aerodynamics and small disturbance theory (Ref 1). Consequently, a
large portion of the technical papers on transonic flow adopt this
simplifying position. The assumptions of two-dimensional, inviscid,
irrotational, isentropic flow drastically simplify the coupled basic
equations of fluid mechanics. Introducing a velocity potential produces
a single, governing, second-order, nonlinear, partial differential
equation which is valid for flows with weak shocks. Small disturbance
approximations provide further reduction in analytical complexity.
Errors in pressure distributions resulting from these assumptions are
not severe except at stagnation points, at large angles of attack, or
when extensive airflow separation occurs.

Within the last eight years a relatively new method of analysis has
been used to solve potential aerodynamics problems. This new method
was originally developed by structural engineers and is known as the
Finite Element Method (FEM). Its application to airfoil analysis is
currently being investigated by both the aircraft industry and govern-

mental agencies.

Previous and Recent Works

Perhaps the first paper to propose the use of finite elements for
field problems involving Laplace and Poisson equations was by
Zienkiewiez and Cheung in 1965 (Ref 2). It was three years later before
the FEM was used to solve an aerodynamics problem. Martin (Ref 3) used

linear triangular elements and a variational principle to solve for the

stream function for incompressible flow over a circular cylinder located
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between parallel walls. Within a year Norrie and deVries (Ref 4-8)
developed finite element techniques to solve incompressible problems

for flow over single and cascading airfoils. They formulated the
problem in terms of the velocity potential and used linear triangular
elements along with a variational principle to obtain the finite element
equations. They also made liberal uses of the superposition principle.
For example, the problem of lifting flow over an airfoil was divided
into thickness and lifting parts, each of which was solved by the FEM.
The solutions were linearly combined and the Kutta condition applied

to specify the circulation. Unfortunately, they were not able to present
many computational examples due to computer limitations.

Shen (Ref 9) published an interesting paper with intent to 'bring
the maximum amount of a priori information theoretical and analytical,
so as to minimize the chore that must be done mumerically in the Finite
Element Method." He formulated the problem of incompressible flow over
a lifting airfoil in terms of the stream function and used a variational
principle. Shen modeled the infinite domain with an inner and outer
patching technique similar to that used in finite difference relaxation
schemes (Ref 10). The infinite domain was divided into two super-
elements or patches. The inner patch contained the airfoil and a portion
of the flow field extending from the airfoil to some arbitrary but
sufficiently large distance from it. The outer patch completed the
infinite flowfield within which an analytically obtained asymptotic
solution with undetermined parameters was used. The FEM was used to
obtain the solution only in the immer patch. Globally the two
solutions were matched along the common boundary separating the two

patches. Shen presented some results for the circular cylinder and
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f* Joukowski airfoils using linear triangular elements, but stated, ''in

actual implementation of the finite element method for the immer patch,

many details remain that affect the accuracy of the results."
For steady, compressible, potential flow over an arbitrary body

additional difficulties appear. The exact governing equation is non-

A

linear, and when the free stream Mach mmber becomes large enough,

bubbles of supersonic tiow may appear over a portion of the body. For
totally subsonic flow Periaux (Ref 11) was successful in using linear
and quadratic triangular elements combined with an iterative solution

algorithm to solve for potential flow over airfoils. Solutions were

AR A A% Lo SR A

obtained from both velocity potential and stream function formulations
by minimization of functionals. Shen and Habashi (Ref 12) noted that
solutions derived from variational principles would not converge for
supercritical Mach numbers. They proposed a local linearization of
the problem which could be formulated in terms of either the stream
function or the velocity potential function. The local governing dif-
ferential equation for the local perturbation velocity potential ¢ !
' was shown to be the linear small-disturbance equation ( Rt M: )?;r ?
+ éq‘, = O - The elemental Mach number Mewas taken to be con-
stant in element @ and was calculated from the previous iteration.
Coordinates (E '9)) were aligned parallel and normal to the previous
‘ iteration of the streamlines. They then used linear triangular elements
and the Prandtl-Glauert transformation to solve for compressible flow
over a circular cylinder without circulation. Flowfields for airfoil

problems were discretized by a mapping procedure using the inverse

Joukowski transformation. Their results converged for compressible

& flow to include a small supersonic bubble, but were valid only for
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Mach numbers near the critical values.

To date the most extensive application of the FEM for airfoil
analysis was done by Chan and Brashears (Refs 13-17). In their initial
work the small-disturbance velocity potential equation was solved for
the cases of: incompressible flow about a lifting airfoil, steady
compressible subsonic and transonic flows about a nonlifting airfoil,
and unsteady transonic flow about an airfoil that is harmonically
oscillating about a nonlifting mean state. The finite element solution
was obtained with cubic triangular elements using Galerkin's method
of weighted residuals. For steady compressible flow the governing
differential equation was cast into an equation of the Poisson type for
which finite element equations were constructed and solved by iterative
algorithms. The infinite domain was divided into two sub-domains or
patches as described previously. A solution was obtained in the immer
patch by finite element techniques with farfield boundary conditions
specified by the farfield expressions of Klunker (Ref 18). The un-
steady transonic flow problem was treated as a sum of two problems after
Landahl (Ref 19): (1) the non-linear transonic flow problem about a
mean steady position, and (2) a linear oscillation problem about the
mean steady position. Generally speaking, velocity and pressure distri-
butions compared well with other analytical or experimental data for
nonlifting subsonic flows. For steady transonic flow, the iterative
Galerkin formulation failed to converge and was abandoned in later
efforts. For lifting cases the finite element solutions did not
compare as well with known results as solutions did for nonlifting flows.

The major difficulties encountered were determining correct values of

circulation and accurate estimates of the pressure distributions near
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the leading and trailing edges. Predictions of pressure distributions
for unsteady flows were only quantitatively comparable with experimental
results.

In later works Chan and Brashears (Refs 15-17) abandoned the
Galerkin formulation used in their earlier work. They tried several
techniques to eliminate the improper downwind influences upon the solu-
tion at upwind supersonic nodes, but were unsuccessful when the Galerkin
method was used. They, instead, adopted the least squares method of
weighted residuals, but unfortunately used elements which were not
compatible with the new formulation.

Recently, alternative implicit velocity formulations for small-
disturbance theory have been suggested by Wellford & Hafez (Refs 20-21),
Ecer (Ref 22), and Aziz (Ref 23). In order to make solutions comnverge,
Wellford suggested adding time dependent and explicit artificial vis-
cosity terms to the governing differential equations, expressed in
terms of the velocity perturbations. Akay (Ref 24) presents a finite
element model for the full, two-dimensional, potential equations using
variational principles. Solutions for subcritical flows showed good
agreement with experimental data, but failed for mixed flows. The use
of artificial viscosity, both explicit and implicit, was introduced in
the analysis to prevent divergence of solutions. The addition of

viscosity caused an oscillation about some solution in the solution

algorithm used, but it did not provide comvergence in the absolute sense.

Objective
The purpose of this work was to use the finite element method

(FEM) to predict surface pressure distributions for two-dimensional,

i e 5
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potential flow over bodies in an infinite uniform flowfield for incom-
pressible and compressible flows that include the transonic regime with
weak shocks. The Galerkin method of weighted residuals, abandoned by
Chan and Brashears, was used with appropriate conforming ''lower'' order
elements. The principle objective of this study was to make as many
simplifying assumptions as possible in both the flow model and the
numerical approximation procedure, and determine whether a ''simple"
Galerkin approach is acceptable for solving a rather complicated, non-
linear, mixed-flow problem in ar. urwounded region where discontinuities
and singularities may exist.

This study was divided f{uito two parts, flow over a circular
cylinder and flow over :: 1hin :.irfoil. One of the original intents of
the stuay was to examine some of the characteristics of the FEM's
application to potential flow problems. Although this intent was
modified, it was accomplished, in part, with the circular cylinder
problem. Three different elements were used, representing conforming
and non-conforming elements. Trial solutions for bilinear, rational,
and trignometric approximations were examined. Properties of flow
field discretization and application of boundary conditions were
examined.

The mumerical procedure for solving the velocity potential
equation for transonic flows was confined to the airfoil problem.
Small disturbance theory and approximations from classical thin-
airfoil theory were used. The purpose for examining the transonic
regime was to investigate convergence problems reported by other
investigators, and attempt to develop a technique to account for the

proper zone of influence in the supersonic region. If an adequate
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method could be developed to exclude the downwind influence on the

solution at upwind supersonic nodes, then the Galerkin procedure would

not have to be abandoned as concluded by Chan and Brashears.

The Finite Element Method (Background Information). The finite element

method was developed about 25 years ago by structural engineers to
analyze complex structural systems. An engineering structure can be
thought of as a collection of discrete elements that are inter-commected
at a finite mumber of locations. For example, a simple pin-commected
truss can be modeled by axial-rod elements. For a given static loading,
the enforcement of global equilibrium (force balance) is sufficient to
determine the tensile or compressive loading of each element. In a
continuum, whether it be structural or otherwise, the mumber of con-
nections becomes infinite. For such problems the contimum must be
divided into a finite number of conveniently shaped elements and trans-
formed into a discretized finite assemblage of nodal parameters.

In the earlier stages of finite element development static force
balance formed the theoretical foundation of the method. Later, energy
principles, which form a significant part of structural analysis, were
used. The finite element method provided a way to approximate the
global strain energy of a continuous structural system in terms of the
ensemble of energies in local, discretized subsystems or elements. Nodal
displacements are determined from admissible assumed displacement dis-
tributions by minimizing the strain energy functional.

In the mid-1960s the FEM was examined for possible application to
non-structural problems, such as fluid flow. Successful application

led to further development of the theory. It has since been generalized
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to solve linear and nonlinear partial differential equations for

boundary and initial value problems in many fields of engineering and
mathematical science. Recently, several mathematicians have contri-
buted to the Finite Element development and have established it as an

important branch of approximation theory. Close relationships exist

between finite element analysis and the classical variational concept
of the Rayleigh-Ritz method in problems where variational principles
apply. Unfortunately, variational principles camnot be found in all
engineering problems, particularly when governing differential equations
are not self-adjoint. However, for such problems the weighted residual
methods, such as least squares, collocation, or the well-known Galerkin

method apply. The Galerkin method is perhaps the most convenient

weighted-residual method for FEM analysis.
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II Problem Descriptions

Two steady, potential flow problems are considered in this study.
The first is flow about a circular cylinder and the second is flow over

a thin symmetric airfoil at zero angle of attack.

Circular Cylinder/Incompressible Flow

First consider the problem of steady, incompressible, inviscid,
irrotational flow about a unit circular cylinder (i.e. radius = 1)
placed in a uniform steady airstream of infinite extent. Let the free-
stream be directed in the positive X -direction with coordinate systems
attached to the center of the cylinder as shown in Fig 1. Let £t
denote the infinite flowfield domain composed of points (f,6) . The
boundary of Sl (denoted 941 ) is composed of all points (Y,6) on the
cylinder surface (denoted 8{t. ) and the boundary at infinity (denoted
3y , i.e. points (r;8) as v —»00). For flow with circulation
a branch cut is placed in £2 as shown in Fig 1. The purpose of the
cut is discussed in a subsequent section.

Governing Equation. The governing differential equatiun for in-

compressible potential flow is the Laplace equation given by

Vz§(r,e) =0 for (r,8)in i) (1)

where § is the velocity potential function. Since the equation is
linear, the potential function can be expressed as f = Veo ( X+ ¢) .
The term \Jp,X 1is the potential of the free-stream with velocity Vg 1

and ¢, the perturbation velocity potential. Substituting this

expression into eq 1 gives
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Figure 1 - Flowfield for the Circular Cvlinder
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Ph(r,e)= © for (r,8) in (2 (2)

which is the governing equation for ¢ .
Boundary Conditions. For the problem to be well posed, boundary

conditions must be specified on the surface of the cylinder and at

infinity. At infinity the disturbance velocities must vanish
Vp—>B as r—eo (3)

The tangential condition applied along the surface of the cylinder is
VA =0 for (r,8)in 3Q. (4)

where W is a unit vector pointing outward from the surface. This

condition reduces to
P+ cose =0  for (n6)in MR )

For flow with circulation the stagnation condition must be
enforced at the down-stream stagnation point, which corresponds to
enforcing the Kutta condition at the trailing edge of an airfoil.

This condition is given by
V¢=70 at (1,8)= (I,-%) (6)

Since §,r = 0 from the tangential condition, then the stagnation or

Kutta condition is satisfied by

(tﬁ)e— rsin®) \ = 0
((19):0;-?0)

)

12
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In order to keep ¢ single valued, a branch cut is placed in the flow-
field as previously mentioned. It can be shown that the jump in
potential across the cut ( ¢*— ¢') is equal to the circulation

defined by

f_':&-\?-d? (8)

—
v is the tangential velocity and ds is tangent to the cylinder. Thus,

across the cut the condition
+ —
N = ¢ - ¢ 9

must be enforced. The actual value of M is unknown, but can be deter-
mined by enforcing the stagnation condition. The numerical procedure
for doing this is described in the next chapter.

When the entire domain L is not discretized, then an additional
boundary condition is needed when symmetric flow (no circulation) is
considered. The problem of flow without circulation can be sol+:id 1
the upper-half space defined by Y2 o (denoted £24,). This is possible
due to symmetry. Actually, any quadrant of Il would be sufficient to
solve for ¢ in all of L. In the half-space the additional boundary
condition imposed along the axis y=z o for all points ¢ 2 | (denoted

bno ) is

@9 =0 along o1, (10)

This condition is enforced from symmetry considerations and is not a

physical boundary condition.

13
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Thin Airfoil

Consider the problem of steady, inviscid, irrotational, isentropic
flow about a thin airfoil placed in a steady, uniform airstream of in-
finite extent. Let the free stream be directed in the positive X -
direction with the airfoil chord aligned with the X-axis. Let {L
denote the infinite flowfield domain composed of points (X, Y )
The boundary of Ll (denoted 9{X ) is composed of all points (X, y)
on the airfoil surface (denoted 9{2,) and the boundary at infinity
(denoted 3f2,,, i.e. points (X,¥ ) as ¢ —» o), as depicted in
Fig 2. For cases involving lift a cut is placed in the flowfield
leading from the trailing edge to the boundary at infinity. The
reasons for the cut are essentially the same for the airfoil as for
the cylinder with circulation, which has been previously described.

Governing Differential Equation. For a thin airfoil, small-

perturbation theory can be used to describe the disturbances in the
free-stream velocity caused by the presence of the airfoil. The
governing differential equation for such a problem is the well-known
small-disturbance equation for the non-dimensional velocity potential

function ¢(x,y) (Ref 19:4). The equation is

[l-MZ-M;(H %) ¢,x} Bxx t Byy = O (11)

for all points (%,¥) inf£2. Mee is the free stream Mach number and
¥ the ratio of specific heats (¥ =1.4 for air). The dimensionless
variables (¢, X,y ) are related to the physical ones (; %,y )

by the relations: x= X/¢C P 7/C , @= J/U‘,’c_

14
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where € is the airfoil chord length and \See , the free stream velccity.
When considering strictly transonic flow over an airfoil with a given
thickness ratio, slightly different transformations relating y and g
are used (Ref 10). In the strict sense, eq 1l is valid only for isen-
tropic flow, but it is a good approximation for flows with weak shocks
(Ref 19:2).

For incompressible flow (M“: O) , g 11 reduces to the Laplace
equation which is valid for bodies of arbitrary shape (e.g. the circular
cylinder). For low subsonic flow (i.e. 0 < Mg < 0.5 ) the nonlinear
term q&x 4éxx is often assumed small compared to the other terms and
dropped, as done in linear theory. However, for flows in the transonic
range, the nonlinear term becomes important and must be kept to model
the mixed subsonic-supersonic flow regime accurately. In this study
the nonlinear term is retained even for low subsonic flow.

Equation 11 is a nonlinear, second-order, partial differential
equation of mixed type. The mixed character is caused by a change in
sign of the ¢£XK coefficient. For subsonic, free-stream Mach numbers
the sign change is caused by the behavior of the nonlinear term. For
subcritical values of N\m the variable coefficient of ¢' xK is positive
and eq 11 is elliptic everywhere in §2 . When Mg, is increased
slightly beyond some critical value, the coefficient becomes negative
in a region in the vicinity of the maximum thickness point of the
airfoil. Equation 11 is hyperbolic in this region while it remains
elliptic in the remainder of L& . Along the line which separates these
mixed flow regions, the coefficient is zero and the equation is para-
bolic. Unfortunately, the position of the parabolic or sonic line is

not known a priori. In addition, the existence of the nonlinear

16




term permits solutions which have discontinuous first derivatives.

These discontinuities are associated with the presence of weak com-
pression shocks which separate the downstream side of the hyperbolic
and elliptic regions. These shocks permit the supersonic flow in the
hyperbolic region to return to subsonic flow in the elliptic region
over very small distances.

Boundary Conditions. For the problem to be well posed, a boundary

condition must be specified on the surface of the airfoil and at

infinity. At infinity the disturbance velocity must vanish, i.e.

thJ-% o as ¥ — OO 12)

The impervious or tangential condition for flow along the airfoil sur-

face is given by

By= (14895 mr(W i dly @

where F(X,¥)= Yy~ §(x)= 0 describes the surface of the airfoil.
To be consistent with linear small-perturbation theory, the ﬂ ¥ term
in the tangential boundary condition is normally neglected compared to
unity. This boundary condition is not enforced on the surface
F(X,y)= 0 . Instead, it is applied along the axis y= 0¥, in
accordance with classical thin-airfoil theory (Ref 58).

For nonlifting thin airfoils the solution can be obtained in the

upper half-space. From symmetry considerations the condition
by = © (14)

must be applied for all points along the axis y= O which lie beyond

the leading and trailing edges of the airfoil. For more discussion
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‘ about this condition refer to the description of the circular

cylinder.

P

Circular Cylinder/Compressible Flow

The description of the compressible flow problem for the cylinder

was purposely placed after that of the airfoil. The problem of sym-

metric, steady, potential flow over a circular cylinder can be formu-

et

. lated in half-space (denoted R'/L)’ as described for the incompressible
5 problem. The governing equation when compressibility is considered is
no longer the Laplace equation, but is highly nonlinear and of mixed

type (Ref 24). The exact potential equation is

R - A

(é,x‘ z)éxx + 28, é,yé,xy

: b (Ey- @)y = O &

where

oie ah o+ B[S - (81483

| This equation is a nonlinear, second-order, mixed elliptic-parabolic-
N hyperbolic, partial differential equation. It reduces to the Laplace
equation for incompressible flow and to the small-disturbance velocity
potential equation (i.e. eq 11) for flow over slender bodies. Instead
’ of using the exact governing equation for the compressible problem, the
small-disturbance potential equation for transonic flow was selected as
the governing differential equation. From a physical viewpoint eq 11 .;'

» does not accurately model the flow over the cylinder since the velocity B

18 .




perturbations become large. From a mathematical perspective it can
be solved for the cylinder when appropriate boundary conditions are
specified. The physical validity of the solution can be evaluated by
comparison with solutions of the exact potential equation. Thus, the
assumed governing differential equation for compressible flow over the

cylinder is given by eq 11

[l—Mf,-M:(HT)qS,,‘JqS,“ + Qyy=O (11)

The cylinder radius is used in place of the chord length to nondimensional-
ize eq 11 for the cylinder problem.
The boundary conditions for the symmetric compressible problem are

described in a previous section. They are given by eqs 3, 5, and 10:
V- o as ¥ —» @ (3)
¢;r +Cose = o for (N, 8) in afte (5

,6 = O for (r, 6 in 3LRe
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IIT Analysis of the Cylinder Problem

Flowfield Discretization

A finite element solution of the governing differential equation
for the cylinder problem requires that the flowfield be discretized by
a finite murber of elements. Two techniques are possible; for each
technique domain St is replaced by a finite domain f0¢ . First of all,
one could take £2¢ to be very large, and require that the actual
gradient boundary conditions, expressed by eq 3, be enforced along the
farfield boundary. Since these boundary conditions and also those
specified on the airfoil surface are of the Neumann type, then the
solution of the governing differential equation can only be determined
to within an arbitrary constant. If this technique was used, then one
must specify the value of ¢ at some point, preferably at a nodal
point along the farfield boundary, so the solution can be uniquely
determined everywhere.

The second possible technique is to impose along the farfield
boundary (aﬂg) the condition ¢= ¢FF' The expression for g
should be an asymptotic solution which satisfies the infinity con-
dition and is valid in the farfield of SL (Ref 18). This approach
is commonly adopted by investigators using finite difference methods
(Refs 1, 10, 40). It is also employed by others using finite element
methods (Refs 9, 12, 13) and will be used in the present analysis.
Generally speaking, a relatively smaller domain Ll ¢ is required for
the second technique than for the first. This means for a desired
degree-of-accuracy fewer degrees-of-freedom are needed to solve the

problem, which translates into lower computational costs.

20
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A number of different elements can be used to discretize domain
{lg . When triangles (Ref 3) or quadrilaterals (Ref 13) are used, the
shape of domain IZF is altered since the discretization does not
exactly describe the boundary shape. This approximation may not introduce
significant error in the solution unless large elements are used near
the boundaries. The isoparametric quadrilaterals described by Raju
(Ref 27) or those developed in this study will exactly discretize domain
1, . For this reason, the element shown in Fig 3 will be used for
the cylinder problems considered. Figures 4 and 5 show the discretiza-
tion of £l¢ for problems of symmetric flow and flow with circulation,

respectively.

Incompressible Flow

Before describing the finite element analyses of this problem, a
further simplification will be discussed.

Superposition. When incompressible flow with circulation is con-

sidered, the velocity potential function may be represented by two
simpler component functions. Since the governing differential equation
and boundary conditions are linear, then the perturbation potential

function can be expressed as

$= ¢+, 1)

This superposition of solutions will produce two problems, each of
which can be solved without concern about what the value of circulation ‘
should be or how it should be handled numerically. The function 96t |
is the solution for the thickness or symmetric problem, and ¢& the

solution of the lifting problem with unit circulation. The actual

21




41320039 JUBUBTY 103085 - £ 2an31y

J& d\,,

4&\5_& = )
v -%

i
-

22




UOTIBTNOAT) INOYITM JSPUTTA) IBINDIL) B
A9AQ MOT4 10J PTATIMOT] JO UOTIBZTIBIOSY] - 4 2IN3T4

Q
u\fod.m " ve
NS L]

Iy
e

Y -




oy x ..

- JT.

wv o«

+
AT L el e -

vy
A

—

- Figure 5 - Discretizarion of Flowficld for Flow
Over a Circular Cvlinder with Circulation

24




value of circulation (/') is determined from the stagnation condition,

ey et < o

‘ {’ eq 7, after each of the two component solutions are known.
{ Substituting eq 16 into the governing differential equation and
i

' ' boundary conditions one obtains two problems. First, the symmetric

i or thickness problem is defined by

j . V2P (rn6) = O for (6)in Rf 17
BC's: @f, + tose =0 for (6) in 3¢ (18)
& , ,v
) K ¢.¢,3 =0 for(r,®8) in 3{2, (19)

¢¢ S Qé.s for {y, &) in N er (20)

Secondly, the lifting problem is defined by

D ¢¥¢, (r8) =0 for (NB)in 1) ,
B BC's: (g, = 0 for(;8)in 3Ne (22)
- Pe= @, for (1 6) in 3¢ (23)
' $F~¢ =1 for (rz1,e=0%) (24)

The functions ¢‘ and ¢v are farfield expressions for the thickness
and lifting problems, respectively. They represent velocity potentials
for a source and vortex of unit strength. After ¢t and ¢1 are

known, /7 1is determined from eq 7. Substituting eq 16 into eq 7 and

25




solving for [ gives

! rsine - Pe.6
= (25)

3 .
' “ (vey=(1,-8)

Finite Element Solution. Suppose fQg is discretized by a total of

3 E elements with a total of N system nodes. The approximate solution
% of the Laplace equation, which governs each of the two problems described,

is obtained from the method of weighted residuals as expressed by

[{ Vo ¥ (ve) dA=0 o6
e

for { = l,--*, N . Functions . (¢,8) are weight functions that will
be specified later by the Galerkin method. Integration by parts or
using Green's Theorem gives

. ﬁV(ﬁV‘\U; dA ~ §V¢-ﬁ4{-JS: o) (27)
| 2 o8¢

b p——— e

The functions ¢ and (. are chosen from a class of functions so that
eq 27 is integrable. When {2 £ is discretized by finite elements,
then ¢ and W, must be continuous across inter-element boundaries and

have measurable first derivatives throughout {2 F This means that

1 ¢ and Y, camot be piecewise constants, but they can be piecewise
' linear or bilinear functions, providing continuity is enforced across

inter-element boundaries.

The Galerkin method of weighted residuals is used to obtain the

finite element solution. Piecewise trial fimctions are chosen to

T T
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approximate ¢ which satisfy both the continuity requirements and the
essential boundary conditions (i.e. boundary conditions for which ¢ is
specified). Within each sector element, denoted € , the trial

function can be expressed as

e e
$ve) = N;(ne)g (28)

for y=1,-.-,4 . The repeated index J. indicates sumation over the
range of the index. NJ (r) 6) are basis or shape functions and %.eare
the unknown nodal values of the potential function. For Galerkin's
method the weight functions $; are set equal to the shape functions
N: (v, 8) - Since the basis functions are chosen to be continuous
across inter-element boundaries. then eq 27 can be written for each

element as

f_{vqfo IN;dA — 57¢-ﬁ N;ds = o (29)
e 20%

for (= l,+«+,4. The star ¥ notation on the boundary term
signifies that the term can be non-zero only for elements € that
border the bcundary of Llg . For all other elements the boundary
integral is zero. Substituting eq 28 into eq 29, and also putting
the actual gradient boundary conditions into the boundary term. pro-

duces elemental equations of the form

e e e
K¢ ¢J. = £, (30)

e

The matrix K ",l' is referred to as the elemental stiffness matrix and

27
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is given by

KZ- = Jf(Ne, N;,- 7 Moo Nyo ) d A 3D
Ne

The form of vector .R oe depends on the gradient boundary conditions for
the problem being considered and will be specified in later sections.
The essential boundary conditions, which are impcsed on the trial
functions, are enforced after the assembly of elemental equations.
Thus, Y, in the boundary term of eq 27 is selected to be zero along
segments of J{lg where ¢ is specified (i.e. the farfield boundary,
@LLgr ). The usual assembly procedure is used to transform all of
the elemental equations into a global system of equations which can

be expressed as
KL-J- ¢-J: F" (L,J': Lo, N) (32)

Global expressions K 5 ¢ ) F' are the counterparts of elemental
expressions Ke' ¢e) Fe respectivelv. Equation 32 is reduced to
the final set of system equations by enforcing the essential boundary

conditions along BQFF . First, eq 32 is partitioned as follows

>
1o

$al - | & (39)

- - - - o o

Ky || @ £

Vector iqu'g is composed of the L nodal values of (gg which lie
along 9fLgf¢ and is computed from the farfield expression ¢: ¢FF .
Vector{¢a} is composed of the remaining M= N - L. unknown nodal

values of ¢, which is determined from eq 33 bv inverting matrix

28
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{Ko.a] to give
M& = [KQJ‘({F& - (kau){ 4 ) (3)

The assembly and reduction procedure just described will be followed
throughout this report.

Trial Functions. Three trial functions were chosen to approximate

the solution of ¢ within the sector element shown in Fig 3. They

are: )
€ Sin © cos e
M ¢(r)9): a,+b,——;_—-+ C, = +d,0 (35)
e
@ ¢(Y;6) = Qz + sz' + ¢, 6 + dz Ye (36)
-1 -
3) ¢e(V",B) = 03 + b_;r + 039 -+ d3 Y',Q (37)

Constants (O,K)...‘AK) can be expressed as functions of the unknown
e .

nodal value of ¢ and the geometric parameters of the element.

When the constants are evaluated, each of the trial functions can be

written in the form expressed by eq 28
e e
4)(*’5) = Nj(‘ﬁe) q%; , (=), ) (28)

The expressions for NJ~ (r, 6) are given in Appendices A-C for each
of the above trial functions. Throughout the remainder of this report
the superscript € will be omitted when it is clearlv understood that
elemental quantities are heing considered.

Symmetric Flow. First, consider the problem of symmetric flow.

This problem can be formulated by either considering all of domain




‘ { 'QF or half of it. Typical discretizations are shown in Figs 4
and 5. Using Galerkin's method eq 27, as expressed by eq 29, can be

written for element € as

; ‘ A
e ——— M

V ewae e

e
JI(VNZ'VNj)dA 9%,‘ = S‘V¢'F'T N; ds (38)
Ste 9.(2:

for (l:,J =1, 7*,4). The star % notation on the boundary term sig-

RAES i

e

1
A .o . . .
a! nifies that the term is present only for elements which intersect
t
]
1

Qe and L . When eq 18, the boundary condition, is substituted

n;‘"

into eq 38, the results can be written as

e (4 e

KCJ' q%’ = £ (30)

. e
where stiffness matrix K; J is given by eq 31. The only non-zero

e
values for -R- comes from elements which contact the cylinder surface

and is defined by

6,
e

= C=Ya=1

The symmetric problem was solved using the three sector elements
‘ described in Apendices A-C. The derivations of K Z- and -f:.eare also
’ presented in these appendices. The assembly, reduction, and solution
procedure described in the previous section was followed. The

expression for the farfield potential, needed to reduce the assembled

equations, is given by

30




{
f ¢FF= 4Ss = cos/r for (r,8) in 9L s¢ (40)

[ where ¥= Rgg is the radius of g .

Flow With Circulation. When circulation or lift is present the

entire domain fLp must be discretized as shown in Fig 5. Along the

branch cut,nodes are placed at pair-points located on opposite sides

N

of the cut. The difference in potential between pair-point nodes must

-

be equal to the value of circulation.

e“‘
o L
P L S

A cnvenient way to consider flow with circulation is to use the
superposition technique previously described. The thickness or sym-
metric problem has already been discussed. The lifting problem,

) described by eqs 20-24, is formulated mumerically in a similar manner.
The elemental stiffness matrix K?j is the same as for the thickness
problem, since the governing differential equation for both problems
is the Laplace equation.

There are four minor foriwlation differences between the two
i problems. First, the vector .F._e equals zero for every element &

for the lifting problem. This is due to the boundary condition speci-

fied along 3fle , eq 22. Secondlv, the farfield expression is given
) by

.. = b, = :I'?'r' for (f,6)in 3L2¢f (41)

Thirdly, the required jump in potential across the branch cut must be
+
enforced. This is done bv setting the nodal values of ¢‘ =T 0O an

[ ¢2 = = | for nodes along the cut  This choice is comsistent with

11
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the farfield expression as v —» Rgg and satisfies the requirement
specified by eq 24. This choice also forces ¢l,r = © for points
along the cut. Since this condition is true everywhere for purely
circulatory flow, then no generality is lost by its use. It should
be pointed out, that this choice would not be possible if the super-
position principle were not used to divide the total problem into two
simple problems. When the total problem is formulated without super-
position, then nodal values of potential along both the upper or lower
sides of the cut must be left umspecified. This will insure that the

¢ﬁ¢,r— is not forced to be zero, which it is not for the thickness
problem. The fourth difference occurs in the reduction procedure.
Since the nodal values are specified along the cut, then they have to be
included with the nodes along the farfield boundary when the assembled
equations are reduced. Once solutions for gﬂé and ¢£¢ are determined,
then the circulation defined by eq 25 can be calculated.

The problem of flow with circulation was solved using sector

elements (2) and (3). Appendices B and C present derivations of the

elemental equations.

Compressible Symmetric Flow

The problem of compressible flow without circulation is formu-
lated in the half-space shown in Fig 4. The governing differential
equation for this problem is given by eq 11. and the boundary con-
ditions by egs 3, 5, and 10.

Discretization. The solution of this problem by the finite

element method is obtained in the finite half-space £lg, as described

for the iicompressible problem. Domain .Q,F is discretized as shown
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in Fig 4 by a total of E elements with N global nodes. Since the
governing equation for this problem is the same as the equation for
the airfoil problem, then the asymptotic solution used as a boundary
condition along the farfield boundary (9 fl.gg ) is given by eq 50
described in Chapter IV.

Finite Element Solution. From the method of weighted residuals,

eq 11 can be expressed as

Jflf{["M} Mo(1+7) ) fux + Byl W dA= 0 @
E

for (= ),*+,N. For appropriately chosen weight functions this ex-

pression can be integrated by parts to give

S{f[vé'v% = Mo (Gt B )Wk ] dA
F

- gl*&mﬁ.;\‘- M:(qu+i§‘-4§:) "’x] . ds= 0
93Le

The finite element approximation for ¢ in each element is given by

eq 28 as
@(r,8) = N;(v,8) QSJ' (28)

for J 21,00, 4. For Galerkin's method the weight functions . are

set equal to the shape functions N;. When shape functions are

chosen to insure integrability of eq 43, then it can be written for
every element and assembled as previously described. The elemental form

of eq 43 can be written in iterative form and expressed symbolically as
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for [U': l,-,4. The elemental matrix K;J- and vector f;: are the
same as those defined for the incompressible symmetric problem. The
new expressions L':,f( ¢") and 9c( @”) come from the nonlinear term
and are functions of the solution itself. The superscript v\ is
associated with the iterative solution procedure which is briefly
described below and discussed in more detail in Chapter IV. The super-
script n should not be confused with the vector ;t‘ which is the unit
outward normal along the cylinder surface.
The iterative form of the elemental equations comes from the way

the governing equation is solved. The nonlinear term, ¢$,z,‘ in eq 43,
is written iteratively as ¢' x d;;:l Essentially, the potential
function ¢ is replaced by a sequence of functions { ¢3 ¢’, ‘e,

¢”, ¢n+l}, which generate a sequence of equations expressed by eq 44.

These equations are solved for each iteration until the sequence of

potential fumctions converges. Convergence is assumed when

net 4n
-q—é—-?—;;-é—- , = € %5)

for some small € .
An additional approximation is made to simplify the integrations
"
required by eq 43. In the nonlinear term the derivative d,,( is as-

sumed to be a constant in each element. The constant chosen is the

n
average value of éx computed from
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K: = 7\: S—j(cﬁ,x) (46)

This approximation is made only for the cylinder problem. The non-
linear term is not locally linearized in this sense for the airfoil
problem, but is treated in a more exact manner. TFor this approximation
D
3 ‘e n 3 . - ., 4]
matrix L, (@") can be expressed in two parts as L‘j(¢") = L‘_J(dg, )+

ki.\'(¢"). These expressions are given by

L“(d;') -~ - M“’[.H- Ke<t+3)_] jj[COS 2] N‘,. N

Sin®é Cos8 .
- —T{—""‘(Nt,r 6 + N J,r>

and

Sind CosS8
___________.__

Lip(d7) = - Mg | 1+ke (’*‘OH
ane r=p=1
Vector 3'(‘ é") is given by (48)

g;(¢") = Mm[l"’K (++x)_'}f¢°$6'~/ rla @)

a.ﬂ.e ravy=1

N¢ Ng,e Yl de

The symmetric compressible proble: was solved using sector element

(3). Appendix C contains a description of the element and the deriva-

tives of the elemental equations.
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IV Analysis of Flow Over a Thin Airfoil

The governing equation and boundary conditions for flow over a
thin airfoil are described in Chapter I1. This chapter describes the
numerical analysis of the problem by the Finite Element Method. Many
of the formulation techniques and procedures that are used, have been
described in Chapter III for the cylinder problem. Similar discussions
are not repeated for the airfoil; instead, the reader should refer to

the appropriate sections of that chapter for more detail.

Flowfield Discretization

The infinite flow domain LL is replaced by a finite but suffi-
ciently large domain §L g with the potential specified along the far-
field boundary anFF . A detailed discussion of the reasons for this
approximation is given in Chapter III. The condition imposed along

3 fler is the farfield expression of Klunker (Ref 18) given by

|
ber = m 7| S EIGEE

chord

2:;_ [—-——Sgn(v)-}--}'a;n X ]

l-{-\ uz((g,)fx-f) dsd
TG, g_f (x-8)+8  (Y-9)* 7

where ?,:JI-N\;";

(50)




The first term in eq 50 is directly associated with the thickness

distribution ( U is the thickness ratio) of the airfoil, and is the
dominant term for nonlifting flow (Ref 18). For lifting flow, the
second term is the most dominant of the three and was the only term
included in Chan's formulation (Ref 13). The expression sgn(y) is
required to account for the jump of potential in the farfield down-
stream of the trailing edge. For lifting flow, a branch cut must be
included in S?.F extending from the trailing edge to the farfield
boundary. Across this cut the jump of potential is forced to equal

the value of I’ appearing in eq 50. The last term is of highest order
and involves an area integration over the entire domain LLg . When
this term is included in the farfield expression, an iterative solution
algorithm must be used since the term depends upon the solution itself.
The effect of neglecting the last term is evaluated in Chapter VI.

Consider the problem of flow over a symmetric airfoil at zero angle

of attack. From symmetry considerations the problem can be formulated
in the half-space. Figure 6 shows an initial division of {2 g into
three segments or super-elements. Since the tangential boundary con-
dition for a thin airfoil is enforced along the Y=o axis, then the
first row of elements used to discretize the center segment must

extend to the chord line ( X~ axis). Any type of element with straight
line boundaries (i.e. triangles, rectangles, etc.) could be used to
discretize the super-elements. After selecting the type of element

to be used, one could write a computer subroutine to automatically
discretize each super-element from a few input parameters which describe

how the segment is to be divided into smaller parts. This procedure was

followed for both the cylinder and the airfoil problem; however, the
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details are not important and will not be discussed.

A slight modification in the described discretization of the
center super-element would be required if the tangential boundary con-
dition was applied along the actual airfoil contour. For this case,
elements in the center segment would not extend to Yy=0©0 . Elements
would have to be selected to either match or approximately match the
shape of the thickness profile. This difference in discretizations
becomes significant when thick airfoils are to be analyzed, and is

discussed further after the elemental equations are formulated.

Iterative Approximation

If the solution of eq 11, the governing differential equation, is
directly formulated by finite element methods, then a set of second-
order, nonlinear, algebraic equations will result. These equations
would have to be solved by some iterative technique such as Newton-
Raphson. This type of solution process can be avoided by directly
expressing and solving the governing equation in iterative form. First,

eq 11 is written as

2 2 .
&I’Mw)éi - My L.';:I %X])x + quy\} = © 6h

2
As described previouslyv for the cylinder, the nonlinear term éx is ap-
. n n+/ 3
proximated iteratively by ¢/X dl.‘ where y} denotes the iteration

rumber. In essence potential ¢ is replaced bv a sequence of

potentials i ¢o) ¢’, e, ¢7 ¢n+(} , which converges when

N+t n
¢ -¢| =« ¢
¢n+l -

(45)
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for small € . Thus, eq 51 written in iterative form becomes

nfl

! n+i 5 n Pt/
- [(I oo)¢x ‘“M;%éx ox J;X =0 062

Finite Element Solution

Suppose the half-space {Lg is discretized by a total of E

U

elements with N nodes. The approximate solution of eq 52 is ob-

4.

Pt
. A . . Semee.  ae e

tained from the method of weighted residuals as expressed by

o

Ly

ntl n Nt "
SS{[(‘—M;)céx —M:, %I¢x¢,x J’x+¢ H}‘P,;,JA:O
o (53)

where (= |,...,N . For suitable weight functions ¥, . th.: equation

can be integrated by parts to give
“{ M- ML BT+ 4, T dA

-H[l—M?;,— Meo . xéx]¢7x+lﬂx +¢?+"‘y}?’ ds =

A0, (54)

+

~i

where ¥ = (ﬂ,"ﬂv) is the unit normal vector along each segment of

3{l¢ . The boundary conditions:

N ( ¢?:')-A‘J—)(‘E- for (X,¥) in 3, 55
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and
N+l
<}§ y =0 for (X,¥) in 3L, (56)

are substituted into the boundary term of eq 54. Since ¢ is specified
along dfLgpg . then Y is taken to be zero there.

Equation 54 is piecewise integrable over the discretized half-
space providing ¢ and ¢, are at least contimuous functions across the
inter-element boundaries. Within each element the solution can be

approximated by
P(x.y) = N; (%,9) ¢, (57)

where N J are the shape functions and ¢ | the unknown potential values
at the nodes. The shape functions are chosen to satisfy the required
continuity of ¢ in the global sense. For Galerkin's method ¥, is set
equal to N‘:. Thus, all continuity requirements are satisfied to
allow eq 54 to be written in elemental form and assembled to obtain

the global form. The elemental form of eq 54 is expressed as

n+/

Kij (¢) ¢; o

Matrix K‘.\(¢n) is given by the sum of the following five matrices:

A‘.j - ({- M;) g_( N")X N_)';X JXol)’ (58a)
Qe

Sg N:,y N 5,y dxdy (58b)
SLe

[ SaS
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Vector -F‘- is defined by

g N, dx l C,X (58f)
YA

In general K{J(¢") and -F" depend upon the shape of the airfoil.

The contribution to K g (¢") from the airfoil shape comes only from
matrices D j and E "j (¢") . These matrices are evaluated only
for the first row of elements above the airfoil in the center segment
shown in Fig 6. They are zero for all other elements since they come
from the global boundary term of eq 54. This boundary term could
alternatively be taken to the right-hand side of the equation and
treated as a force. The effect of this alteration would be a slightly
slower convergence rate caused by replacing ¢n+l with qS" in the
affected terms.

The contribution to K"J (¢") from matrices A,_.\ , ‘lj , and
& ;A(df‘) are independent of the airfoil being considered, since they

depend on an integration over the elemental area. This is true only

because the tangential boundary condition is imposed along 3 -0 +
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which requires that elements be extended to the X -axis. If the
boundary condition was enforced on the airfoil surface, then the area
of elements in the first row of the center segment would be smaller
by comparison. Thus, an indirect dependence of the airfoil shape from
these elements would be reflected by all the matrices defining
Kij(¢{') . The effect of enforcing the boundary condition along

N = c)*' instead of on the airfoil contour, is not critical for thin
airfoils as long as element sizes in the Y-direction are larger than
the thickness of the airfoil. Since one of the advantages of the FEM
is the ability to use relatively large elements to achieve accurate
approximations, then element size difficulties should not be critical
until thickness ratios become large. For thick airfoils or for arbi-
trarily shaped bodies the boundary conditions must be satisfied, not
on j-:. O+ , but on the surface contour. For these shapes, elements
would terminate at the contour and pose no conflict. By way of com-
parison, some investigators (Refs 10, 40) using finite difference
methods and small grid sizes satisfy the tangential condition along
y=ot

Several different types of elements and orders of approximation

could be used to solve this problem. For example, the higher-order
cubic triangular elements used by Chan (Ref 13) would be more than
sufficient. Also, linear triangular elements (Ref 7), which provide
the lowest permissible approximation, would be adequate since they
satisfy the required continuity. In terms of velocities, the linear
triangles would give constant velocity elements. In order to get a
linear variation in velocity, which is not required, one would have to

use quadratic triangular elements. Somewhere between the linear and
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quadratic triangular elements are the bilinear rectangles or, in

general, the quadrilaterals. Rectangles are normally not very useful
except for simple boundary geometries.

For the problem being considered, the boundaries are straight line
segments as shown in Fig 6. The boundary segment between the leading
and trailing edges of the airfoil is straight only because the tangen-
tial boundary condition is satisfied along the chord (i.e. ¥= ot).
Therefore, rectangles can be used effectively to discretize -Lp
everywhere. Rectangles are desirable due to their simplicity, and were
chosen for this reason. They are described in Appendix D along with

the derivation of elemental equations.

Mixed Flow

Reported Comvergence Difficulties. Several investigators, who

have tried to solve the velocity potential equation using finite element
methods, report difficulties with convergence of solution algorithms
for transonic flow. Among these are: Chen and Habashi (Ref 12), Chan
(Refs 13-16), Ecer (Ref 22), Akay (Ref 24), and Aziz (Ref 23). Diver-
gence of solution algorithms have lead some to believe that Galerkin's
method could not be used. Others claim the source of difficulty is

the small-disturbance. velocity potential formulation of the problem
and suggest that alternative formulations be tried. However, Akay

(Ref 24) reports convergence difficulties with finite element solutions
of the total velocity potential equation. It should be noted that con-
vergence problems also occur when finite difference methods are used

(Refs 33, 34, 40). To insure that solution algorithms converge,

special difference operators have been developed. A different operator




—

e e e —— e e .

~ a. e 2R
A USSR S

v

o 9 b
Iy ac ' " ’ " .
el Pl 3 o e e — e~ @ s - .. ol coetlttron i e~ . ’

may be used at each grid point depending on whether the point is con-
sidered to be an elliptic, parabolic, hyperbolic, or shock point
Divergence of solution techniques for more classical methods. such
as the Rayleigh-Janzen Method (Refs 29, 30), also occurs when transonic
flow develops.

The convergence problems reported by other investigators for

transonic flow are also observed when the methods described in this

study are used to solve the transonic problem. Solution techniques {
converge quickly as long as the flow remains subsonic everywhere in

_IZF-. When transonic flow occurs (i.e. a small supersonic bubble

appears in the flow), solution techniques which are suitable for sub-
sonic flow (i.e. an elliptic problem) do not converge at all. These
conclusions are supported by solution results presented and discussed
in Chapter VI. Convergence difficulties are caused by the mixed
character of the flow which results when the governing differential
equation changes type from elliptic to hyperbolic in the supersonic
region. To overcome convergence difficulties an adjustment is needed
in the finite element equations for elements in the supersonic region.
The purpose for this adjustment is to accoumt for the proper zones of
influence in the supersonic region where the equation is hyperbolic.
Finite element formulations of elliptic equations work quite well, but
those same fonmlations applied to hyperbolic equations will not work.

Formulation Adjustments. Other investigators have tried various

techniques to alter their finite element formulations for mixed or
transonic flow. These techniques are briefly described, and all were
tried in the present study. The first technique was developed by

Chan, Brashears. and Young (Ref 23). They altered their finite element
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equations for elements in the supersonic zone during the assembly

procedure. Before the local stiffness matrix was assembled the
¢,xx coefficient, ¢ = I—M; - M:‘, ()+“J) é/x , was calculated
at each node. If § was negative at all nodes in the element. then
the rows in the stiffness matrix corresponding to the dowrwind in-
fluence were ignored in the assembly process. By zeroing out the
appropriate rows in the elemental stiffness matrix the downwind in-

fluence on the solution at upwind nodes was blocked. Chan's technique

appeared to work in conjunction with the least squares formulation
that he used.

The second technique was developed by Akay, Ecer, and Utku (Ref
24). TFor the iterative solution procedure they chose, the stiffness
matrix was a function of the nerturbation velocity squared. During
the iterative process, if any clemer @ was inside the supersonic

zone, then the velocity term denoted by ?: was replaced by
2 3 2
e > (1-0)8, + O3 59

Velocity 3,‘ is the velocity in the element on the upstream side of
element € . The constant @ is the upwinding coefficient which was

taken to be between 0.2 and 0.3. According to Akay, this technique

prevented the iterative solution algorithm from diverging: however. it

did not produce convergence in the sense of eq 45. Instead, the

solution for the potential fumnction oscillated about some solution.

In addition to Akay's own technique, he also tried Chan's upwinding :

method, which caused the solution algorithm tn diverge immediately

upon application.
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Four additional upwinding techniques were tried, three of which
are briefly described below. The first is an element sliding tech-
nique which is implemented during the assembly process. As the
elements are assembled, a check is made to see if the velocity at all
element nodes is supersonic. If the element is inside the supersonic
region, then it is slid upstream before assembly. Thus, the influence
on the unknown nodal values associated with that element comes from the
region upwind of the nodes.

The second technique is a nodal sliding method which is imple-
mented after partial assembly of the elements in the supersonic bubble.
This method closely resembles the upwinding or backward-difference
methods used in finite difference analyses. Before assembling any
elements, a check is made to identify which nodes are contained within
the supersonic bubble. If a node is in the bubble then all elements
which have that node in common are identified. Next, a portion of the
stiffness matrix, which comes from the X -derivative terms, is assem-
bled for the identified elements. After this portion of the assembly
process is completed, then the coefficients in the partially assembled
global equations are slid upwind one position. This procedure is anal-
ogous to taking the first-order, five-point, central-difference
star and sliding the horizontal coefficients upwind one step to get

the backward-difference operator as illustrated below

[ J [ ]
o ® ® . . . . ©
] )
central -difference backward-difference
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The third upwinding technique was only briefly examined. It

was taken from a suggestion by Christie (Ref 37), and could prove to
be effective if developed properly. For this technique, the weight
functions are chosen to be different than the shape fumctions for all
elements inside the supersonic bubble. The idea is to give more weight
(i.e. more influence) to the upwind half of the element than to the
downwind half. For the technique tried, upwinding was done only in the
K -direction. Weight functions were taken to be ¥'= N ¢+ A P(X)
for ¢ equal to an upwind node, and Y, = N = p(X) for

i equal to a downwind node. The function P(X)is chosen to be zero
at the nodes. This technique was tried for ?(X) = X (X -2 Q.)
and o= | , but it was not explored thoroughly and warrants further

study.

New Upwinding Technique. A new upwinding technique was developed
in this study. It is more intuitive than analytical in nature, although
it has an analytical foundation. It is not as elegant an idea as the
previous one, but it is simple to use, and provides accurate approxi-
mations of pressure distributions for transonic flows. For this and
other reasons it may be preferred to the previous method. It is well
known that picking weight functions which are different from the shape
functions may lead to significant error (Ref 37).

The new method was developed by modifving the finite element formu-
lation of the nonlinear term, which is the term that is responsible for
the mi: -4 character of the flow for subsonic, free-stream Mach numbers.

Recall that the nonlinear term in eq 51 was written iteratively
as ¢av:( :\Kﬂ . For iteration (n+1) this term is relaxed by

replacing it with the expression




B &

bR

RN

L U S S

Y

&% b — Réx Bx +(-R) dx dn ()

The relaxation coefficient R takes the range of values: OSSR £ |
The last term in eq 60 can be taken to the right-hand side of the
governing equation and treated as a force computed from the previous

iteration. Thus, eq 51 written in iterative form becomes
N+t
[("M:)%x "M:, H"R¢x n+0] x t ¢¥V
[M:o HE(1-r)(47 )} (61)

When R= | , the nonlinear term is not relaxed at all. For Rz o0,
the nonlinear term is totally relaxed (i.e. it is taken to the right-
hand side of the equation and treated as a force that depends upon the
previous iteration of the solution). For values of R between 0. and
1. 0 a mixture ¢f these two extremes exists. The sole modification
of relaxing the nonlinear term is not sufficient to make the solution
algorithm converge in the sense of eq 45. It would be difficult to
imagine that a hyperbolic equation could be solved by merelv solving a
sequence of elliptic (Poisson) equations. The ideas of domain of
dependence and range of influence from the theory of differential
equations must be included into the modification process. As dis-
cussed previously the sign of the ¢) xx coefficient will determine
whether the governing equation is elliptic or hyperbolic. Inside the

supersonic bubble that appears for transonic flow the coefficient is

negative and the equation is hyperbolic. Outside of this bubble the
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coefficient is positive and the equation is elliptic. For elliptic

differential equations the domain of dependence is the entire domain
of the problem, but for hyperbolic equations the domain of dependence
at some given point is confined to the region within the backward

cone defined by the characteristic curves. Consequently, the solution
at the given point is influenced only by the solution at points in

the backward cone and not by the solution at any other points in the
domain. Likewise, the solution at the given point will influence the
solution only for points in the forward cone, also defined by the
characteristic curves.

Without getting involved with the method of characteristics, the
above described concepts can be incorporated into the modification
procedure being discussed. For elements inside the supersonic bubble
the nonlinear term is relaxed as described. This means that forces
which depend upon the solution are applied at each of the element
nodes. However, the solutions at upwind nodes cannot be influenced
by the solution at downwind nodes; therefore, the forces acting at
downwind nodes are set equal to zero. In addition, the solution in
the element camot depend on forces applied at upwind nodes, when
those forces are determined from an integration over the entire area of
the element. At any point in the element the solution should depend
on the potential only in a backward cone defined by the characteristic
curves. Thus, the upwind forces must be reduced in magnitude by some
factor. One way to represent this numerically is to multiply the
relaxed term (|—R)(¢,:)2' by the factor U where 0,0 % U< |.0

at upwind nodes. Thus, the iterative Galerkin form of the governing

equation for hyperbolic elements becomes
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(l0-moY gy - M, LR 7]+ T dA
" 'g'e,hyp
<
! = U(1-R) M;ll?—ﬂ(‘}‘,:),x N; d A (62)

where \J 1is given by

O.0 to |.0 at upwind nodes
U =
0.0 at downwind nodes

In actual implementation eq 62 is integrated by parts as discussed
previously. The elemental equations expressed by egs 58 a-f, and
referred to as equations for elliptic elements, are modified by the

upwinding procedure for hyperbolic elements as follows:

'; (Aijdnyp = (A;)ew (63a)

[ (8 hgp = (Bij)ew e

i | . Ci (¢")’~YP = RC;(#)ew (63c)

| (DijYhyp = (Pi5)eut (63d)

F E (@) nyp = R E:_;(an)eu (63e)

% )y = ), + (3ithi)g, (63)
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The last two terms in eq 63f are forces resulting from the upwinding

procedure. They are given by

N
(3c')hyp - U(l- R) C‘J(¢n e ¢Jl (620

(h) g = = V(-R) E;5(47,, ¢ (630)

The relaxation and upwinding parameters (R,U) were investigated
by numerical experiment for two reasons. First, an estimate was
needed on the range of values for which solution algorithms converge.
Secondly, the 'best possible' combination of parameter values for a
given Mach nmumber was needed to solve for realistic pressure distri-
bution on the airfoil. The effect these parameters have on conver-
gence properties and on airfoil pressure distributions is presented
in Chapter VI.

In general, the idea behind the upwinding method is to modify
the formulation just enough to capture the physics of the problem,
within the realm of the assumptions.

For a given airfoil shape and Mach mmber, the values of R and

\J are selected by an iterative method. First, upper bounds (i.e.
values above which solutions will diverge) and lower bounds (i.e.
values below which solutions will not diverge) are estimated. The
idea is then to determine the lowest upper bound for both R and

U which permits the solution algorithm to converge. The old,
familiar, and perhaps inefficient interval-halving method was used for

this procedure. Further discussion concerning this procedure is given

in Chapter VI.




V Results -~ Flow Over a Circular Cylinder

Finite element solutions are presented for flow over a unit
circular cylinder for Mach mmbers within the range of © € M, & M,,.
These solutions are compared with exact solutions for incompressible
flow and with solutions obtained from other approximate methods for
compressible flow. The problem of incompressible flow without circu-
lation was solved using three different elements representing one
nonconforming and two conforming approximations. The two conforming ,
elements were used to solve the incompressible problem with circula-
tion. The compressible problem was solved using the new conforming

element.

Incompressible Flow Without Circulation

Geometry. The entire flowfield was discretized as shown in

Fig 5 for a typical set of discretization parameters. Only a quarter
of the field is necessary because of symmetry, but since the addition
of circulation requires the entire field, then it was discretized for
all of the incompressible problems. A computer subroutine was written
to automatically discretize the field from the parameters ( RFF, NR,

Ng). RFF’ is the radius of the farfield boundary, Ng the number of

element rings, and Ng the number of angular sectors in each ring

(see Fig 5).
The location of the outer boundary depends upon the boundarv
condition imposed there. When the farfield expression given bv eq 40

is used, Rgg can be as close as 3 radii from the cylinder. If other

boundary conditions are used, for example ¢FF = ©, then RFF has
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to be extended beyond 10 radii before the velocity profile on the
cylinder surface is unaffected. The boundary condicion ¢£;;-: O does
not produce adequate velocity distributions when farfield boundaries
are located within 10 radii of the surface. This behavior was expected
and affects the velocity distribution significantly in the region of
maximm velocity. For this reason, and to preclude the necessity of
considering large flow domains, the farfield boundary condition given

by eq 40 is used exclusively.

Comparison of Three Sector Elements. Before examining the effect

of element refinement on convergence, a comparison among the three
finite element approximations and the exact solution is given. The
solutions for a coarse flowfield discretization of only 12 elements
(3 rings and 4 sectors) are shown in Fig 7 for the three trial functions
described in Chapter III. The nonconforming approximation appears to
be better than either of the other two conforming ones for the dis-
cretization used. The noncomforming approximation obtained from this
coarse discretization actually compares well with solutions obtained
from the other two conforming elements when a more refined discreti-
zation is used. One might conclude, on the basis of these results
and observations, that sector element (1) is the most desirable
element; however, this choice is a bad one. For the two conforming
elements, the approximations improve when the discretization is re-
fined, but they do not improve for the nonconforming element. In
fact, the error in the approximations becomes greater when the dis-
cretization is refined.

One reason for the decline in accuracy for the nonconforming

element is due to the error caused by not satisfying the required
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continuity of potential across inter-element boundaries. For coarse
discretizations, which mean relatively few such boundary lines, the
error is comparatively small. However, as the discretization is
refined additional error occurs and the solution degenerates. TFurther
refinement compounds the problem which leads to the rejection of sector
element (1), except for the most coarse discretizations. There are
formulation adjustments which can be made to improve the nonconforming
solutions significantly for finer discretizations. However, the
resulting solutions are not as good as those obtained from the con-
forming elements and these adjustments will not be discussed.

Discretization Effects. Tangential, velocity distributions

'U'e (r= 1,6) obtained from each conforming element are compared with
the exact solution as shown in Figs 8 and 9. The four finite element
solutions in each fipure are for four different discretizations of
-Q'F . Additionally, these discretizations represent refinement of
the element angular size parameter @ for a fixed value of the element
radial size parameter & . These solutions are presented to show the
difference in convergence properties between the two conforming
elements as a function of discretization refinement. By comparing the
solutions in Figs 8 and 9 with the exact solution it appears that
refinement of@ alone is sufficient to achieve convergence with element
(3), the new element. It also appears that refinement of @ alone is
not sufficient to achieve convergence with element (2), the bilinear
element. For each discretization the velocity distribution obtained
with element (3) is closer to the exact distribution than the distri-
bution obtained from element (2). These differences are due to the

diverse nature of the trial function for each element .
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To further illustrate the difference in convergence properties

between the two conforming elements, consider two variations in the
discretizations of L fF - First, the effect of refining only the
radial parameter ¢{ is examined. The number of angular sectors and
location of the farfield boundary remain fixed. Table I shows the
effect on the solution of the tangential velocity at @ = * Tr'/2
for refinement of & . The points § = ¥T /2 are selected because

the point-wise error there is a maximum as shown in Figs 8 and 9.

Table I - Point-wise Error for Conforming
Sector Elements with Radial Refinement*

Number Outer Radii of Ring Ue(l ) 2.) Per Cent Error
of
Rings { 1 2 3 4 5 6 Element (3) Element (2)
3 2.0 4.0 7.8 0.95 4.46
4 |11.4 2.0 4.0 7.8 0.95 2.49
5 1.4 2.0 2.8 4.0 7.8 0.95 1.99
6 1.4 2.0 2.8 4.0 5.6 7.8 0.95 1.87
4 2.0 2.8 4.0 7.8 0.95 3.98
4 12.0 4.0 5.6 7.8 0.95 4.35

* Number of Angular sectors equals 16.

The percent error is based on the exact solution and is presented for

both conforming elements. First, note that the error in velocity

Tfe(l,‘ﬂ‘/z) for sector element (3) is constant at 0.95% regardless of
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the number of rings or the relative size arrangement of those rings.

Thus, radial refinement is not required, and does not improve the
results obtained with this element. The reason for this behavior is
due to the functional dependence of y in the trial function Since
the exact solution behaves as Cog§ e/vr . then the trial function
contains the correct form for the radial variable. This behavior
suggests interesting possibilities for other types of problems which
will be discussed in more detail in a later section on recommendation
for further work. Secondly, note that refinement of parameter o
for sector element (2) significantly affects the solution. For this
element the radial dependence of v in the trial fumction is different
from the exact form; therefore. to achieve convergence, refinement of
oL 1is necessary.

Three other interesting observations can be made about element (2)
from the data in Table I. First of all, radial refinement alone will
not drive the error to zero. For a given mmber of angular divisions
“here is a certain mumber of rings beyond which the solution does not
get closer to the exact one. This behavior is detected by observing
the rate at which the error decreases as more rings are added.
Secondly, if only one additional ring is to be added to some base-line
discretization (represented by 3 rings in Table I) then the location
of that ring is crucial. For example, approximately 447 reductici in
error is achieved by dividing the first ring into two rings of pro-
portional thickness (as illustrated by line two in the table). Similar
divisions of the second and third rings result in approximately 117
and 27 reduction, respectively (as illustrated by the last two lines

in the table). Thirdlv. for all of the discretizations shown. the
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error obtained from the new element, element (3), is significantly

less than from the bilinear element, element (2).

Next, the effect of refining only the angular size parameter ?
is examined. Refinement of this parameter is required of both con-
forming elements to achieve convergence. The number of rings and
location of the farfield boundary remain fixed. The tangential velo-
city at &= $W/2 is presented in Table II for different angular

divisions.

Table II - Point-wise Error for Conformal
Sector Elements with Angular Refinement’*

Number e (1, T7/2) Percent Error
of Sectors Element (3) Element (2) Element (3) Element (2)
4 1.707%8 1.6484 14.81 17.58
8 1.9244 1.8569 3.78 7.16
16 1.9810 1.9108 .95 4.46
32 1.9952 1.9244 .24 3.78
48 1.9979 1.9269 11 3.66

*“Mumber of rings equals 3.

The error in velocity at & = i"‘T/.z for the new element can be shown to
decrease by O(Qt) The bilinear element converges rapidly for a
couple of refinements in Q . but then a point is reached where further
refinement produces very little change of results. This same

behavior was observed in Table I for radial refinement. Thus, for

element (2) both the radial and angular size parameters must be
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refined simultanecusly with some other parameter such as element

aspect ratio held constant.

Incompressible Flow With Circulation

Most of the discretization questions discussed for flow without
circulation also apply when circulation is present. The required far-
field boundary location, the effect of element refinement, and the
characteristic differences between the two conforming elements are
unchanged by the addition of circulation. The only remaining dis-
cretization question that needs to be answered is whether the relative
arrangement of elements about the stagnation point has an impact on
the value of circulation predicted.

Circulation. In general, the value of circulation obtained from
the solution depends upon the relative location of the stagnation point
within the element containing it. To quantify this statement Table III
presents the error in predicted circulation for a number of discreti-
zations. The data in this table was obtained with the use of element
(3) with the farfield boundary located at Rge=$ and stagnation point
at @= -'IT/ 6 .




Table III - Error in Circulation for Sector Element (3)
for Stagnation Point @ = -TV/é

Angular Number Number 7% Error in

Sectors Element Nodes Circulation
8 16 27 11.6
12 24 39 24.0
16 3z 51 5.5
20 40 63 4.6
24 48 75 11.6
32 64 99 2.9
40 8N 123 2.2

The error in circulation appears to behave irratically as the number of
angular sectors is increased. One would expect the error to decrease
as the parameter @ is refined. The reason for the erratic behavior
is due to the relative difference in locations of the stagnation point
within the appropriate stagnation element as g is refined. When
location differences are accounted for, then the error in circulation
does decrease as @ is refined. For exarple, for angular divisions of
12 and ?4 the stapnation point lies on a node. Doubling the number of
angular divisions from 12 to 24 reduces the error in circulation by
approximately 507%; although, the magnitude of error is greater than for
solutions with fewer angular divisions (i.e. larger elements). Also,
doubling the number of angular divisions from 8 to 16 and again to 32
shows an error reduction of about 50% for each doubling. The same
observation holds true for the division from 20 to 40 sectors. So,

one may wonder, what causes the erratic behavior?
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A search was made to determine if an optimum point exists within
the stagnation element such that the error in circulation is minimal.
Such a point was found to be the angular centroid of the element. Once
the stagnation point is established, then the flowfield should be dis-
cretized to permit the stagnation point to be located at the angular
centroid of the stagnation element. For instance, in order for a
stagnation point at @=~Tif6 to occur at the proper location in the
element, either 6, 18, or 30 angular divisions should be used. Table
IV gives the results from both conforming elements using these angular

divisions and 4 rings of elements.

Table IV - Error in Circulation for Conforming
Sector Elements with Stagnation
Point @ = -7/t Located at the Optimum

Point.
% Frror in Circulation
Angular Number
Sectors Nodes Element (3) Element (2)
6 28 0.0144 3.797
18 95 0.0080 0.597
30 155 0.0032 0.597

It is readily apparent by comparing the results presented in Tables

IIT and IV, that the error obtained for circulation stronglv depends

on where the stagnation point is located in the stagnation element. The
error is maximum when the stagnation point coincides with a node, and

it is mimimun when the point lies half wav between two nodes. It is
also apparent that for a given discretization the new element provides

by far the best approximation, although acceptable results are obtained
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from the bilinear element for the coarse discretizations presented.

Velocity Distribution. Figures 10 and 11 give velocity distri-

butions obtained from each of the conforming elements for the discreti-
zations presented in Table IV. The exact solutions are plotted for
comparison purposes. Accurate estimates of the velocity profile are

achieved whenever the circulation can be predicted correctly.

Compressible Flow

Iterative Algorithm. The iterative solution algorithm for con-

stant coefficients defined by eq 44 converged for subsonic flow and

even for flows where the local Mach mumber exceeded one. It is believed
that a minor disagreement between the onset of transonic flow and the
simultaneous occurrence of a change in the differential equation from
elliptic to hyperbolic, accounts for the convergence for slightly
supercritical flow. Since the small-disturbance equation is not totally
applicable for compressible flow over a cylinder, and since it is
locally linearized by constant local coefficients, then it does not
change types at exactly the same Mg for which the local Mach number
exceeds unity. The local Mach mumber must exceed unity to the extent
that an element becomes supersonic (engulfed within the supersonic
bubble) before the equation changes types. The occurrence was created
by formulation assumptions and would not occur if the nonlinearitv were
treated in a more exact manner. When the differential equation for one

or more elements becomes hyperbolic the iterative solution diverges.

A few reported "upwinding'' algorithms were attempted., but none proved
successful and the attempt was abandoned for the cvlinder. The new

"upwinding"' technique described for the airfoil was not tried and mav
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prove useful for transonic flows.

Critical Mach Number. The critical Mach number Mg, = 0.403 was

b predicted for a discretization of 64 elements with 80 nodes. This

value compares well with that obtained by Imai (Ref 30), who used a

%: Janzen-Ravleigh method of third order. Table V shows a comparison of
- critical Mach numbers reported by several investigators. Greenspan

(Ref 32) used finite difference methods in conjunction with a varia-

LA

tional principle. Habashi (Ref 31) used linear triangular elements as

discussed in Chapter I.

ﬁm W‘-wb il it m\‘v- o
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v

Table V - Comparison Critical Mach Numbers

A
"
j Source of Results Mer % Difference™
.
N This Report 0.403 -0.32
Imai (Ref 30)
3rd-Order 0.4043 0.00
2nd-Order 0.4090 1.16
7 1st-Order 0.4206 4.03
Habashi (Ref 31) 0.40-0.42 -1.06 to +3.88
Greenspan (Ref 32) 0.404 -0.07

* % Difference based upon Imai's 3rd-order approximation.

Velocity Distributions. The velocity distributions for Mg = 0.3
and 0.4 are presented in Fip 12. Imai's third-order accurate results

are presented for comparison purposes. Agreement is good over
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approximately 60 degrees of a quadrant. Differences are more pro-

nounced in the neighborhood of /2. It is in this region that finite
element results for smaller elements are not as good as those reported.
It is believed that the error resulting from using the small-disturbance

equation is responsible for the deterioration when smaller elements are

used. Velocity perturbations in this region approach or exceed 14b .
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VI Results of Flow Over a Nonlifting Airfoil

Finite element results are presented for a symmetric, 6%-thick,

e parabolic-arc airfoil. Pressure coefficient distributions on the
upper surface of the airfoil are computed from the finite element
solutions of the potential function in domain L2¢. Appendix D con-
tains the computational details of this process. Distributions of

the pressure coefficient are presented for a range of Mach numbers

g from zero up through the transonic, mixed-flow regime. Where possible,
vr& these distributions are compared with experimental data and distribu-
;; tions computed from classical thin-airfoil theory, finite difference i
methods, and other finite element methods. Convergence properties of
the iterative solution algorithm are investigated. In addition, con-
vergence properties of the pressure distribution as a function of
discretization refinement and location of the farfield boundary are

established.

Discretization Effects

When the flow domain {2g is discretized several decisions must

be made concerning the flowfield size and arrangement of elements. For
instance, one must decide where to place the farfield boundary. Should
it be relatively close to the airfoil or far from it? How many
elements should be used? If smaller elements are needed to improve :
the accuracy of desired results, then how should the discretization
be refined? Should the discretization of the entire flow domain be
refined? Will refinement in a subregion of I?.p improve desired

results? If so, then which subregion? Answers to these and related

-t

questions are given
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Farfield Boundary Location. The farfield boundary location of

flow domain Qg can be characterized by two parameters Xmax and

Ymax as shown in Fig 13 The solution for the airfoil problem as
formulated could be obtained for any combination of Xyax and Y-

One could select relatively large values for these parameters, but
from a computational viewpoint this approach may be prohibitive. One
would like to select the smallest possible region to reduce the cost
of computing a solution without sacrificing desired accuracy. Thus,
lower permissible bounds of Xpay and Y.« were estimated from a series
of solutions obtained from elements of fixed size. First, a baseline
solution was computed for a given value of Ymax and Ymax. By adding
additional elements to the outer perimeter of the flow domain a
succession of solutions was obtained for increasing values of Xmax
and Ypax. By holding the element size constant and varying onlv the
mumber of elements used, the effect on the pressure distribution as

a function of only the location of the farfield boundarv could be as-
sessed. This process was done twice, once to get a bound on Xmax for
Ymax held constant and vice versa. Figures 14 and 15 show the effect
on the pressure distributions obtained by this procedure for Mg, = 0.
There is nothing magic about selecting the number 3/2 for the parameter
held fixed. Any greater value could be chosen to demonstrate trends.
The table in Figs 14 and 15 gives the numerical values of the pressure
coefficient at the midchord of the airfoil. From the trend of this
data the pressure coefficient converges from below as Xmax and Ymax
are increased. This means that the perturbations velocities ¢éxcon-
verge from above as the farfield boundary is extended. From the data

presented in these two figures there appears to be a farfield boundarv
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location beyond which pressure distributions are unaffected as the
boundaries are extended.

Other descriptions of conwvergence are provided in Figs 16 to 19
which include the effect of Mach mumber. The pressure coefficient
in these figures is normalized with respect to its converged value.
Figures 16 and 17 are for the 1/4-chord point (also 3/4-chord) while

Figs 18 and 19 are for the midchord point. Convergence trends are

. "

4Ll

the same at these three points and as demonstrated in Figs 14 and 15

bR

for incompressible flow, the trend is similar for the entire distribu-

4
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tion.

Gt e
- v
-

N L ar

What conclusions can be made concerning the farfield boundary
location from these figures? First, the curves show that farfield
boundaries more than 3 chord lengths from the origin will not appreci-
ably improve results. In fact, farfield boundaries could be chosen
closer with little effect. For example, less than 47, error occurs
when farfield boundaries are located as close as 3/2 chord lengths.
Secondly, the effect of Mach mumber on the lower bound for Xgpax is
opposite to that for Ymax. For a desired degree of accuracy Xmax
can be taken smaller while Yyax should be larger as Mach number in-

creases. This behavior is not surprising in light of the Prandtl-

Glauert transformation which stretches the'y -variable as Mach number

increases. Thus, perturbations need more distance in the Y -direction
to dissipate.

Farfield Boundary Conditions. Associated with the farfield

boundary location is the condition imposed there. For nonlifting flow
the farfield boundary condition for the potential is given by eq 50

with "2 © . The first and last terms of that equation can be expressed
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as
L NL
QSFF = ¢FF + ¢FF (64)

NL L
where ¢FF is of higher order than ¢FF' as previously discussed. Now

suppose that the above boundarv condition is rmodified bv a constant

and written as
Fee = K (‘75:; t ¢o$) (65)

Vhen K= 1 . the condition is identical to that of Klunker. eq 50
For any other value of X the doublet strength expressed in eq 50 is
proportionally modified. Recall that the term ¢:FL comes from an
integration of é: over the entire domain which means that it depends
upon the solution. When this term is kept in rhe farfield boundarv
condition to compute the solution for the n-th iteration of ¢ then
velocity éx from the previous iteration is used.

Now, consider the effect on the pressure coefficient as E is
varied from C to 1, as shown in Fig 20 for incompressible flow K=0
is a bounding condition for the distribution of pressure coefficient

CP . Increasing E has the effect of translating the C‘P distribu-
tion uniformly toward more nepative values. Since convergence of

CP is from below. as will »e shown in the next section. then in-
creasing E can produce verv accurate results for relativelv coarse
discretizations (i.e¢. larve clements). In fact, for anv realistic
discretization that might be used a value of E can be formd that will

provide CP approximations thatr accuratelv match known or experi-

mental results. All of the results presented in this chapter ave for
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" For compressible flow the effect of keeping the nonlinear far-
field boundary term is not significant (Ref 13). Since this term is

of higher order (Ref 18) its contribution is negligible particularly
for subsonic flow and even for Mach mumbers which produce transonic
flow. For example, the average change in the solution for the pressure
coefficient with the nonlinear boundary term included is only: 0.09%
for Mg = 0.5, 0.327. for M= 0.7, and 0.85% for Mg,,= 0.8. Due to
the computational nature of ¢:: and its minimal effect on the solution,

it may be neglected in favor of reducing computer time.

No other type of farfield boundary conditions were studied; how-
ever, several other possibilities could be tried and will undoubtedly
be the basis for further study.

Element Refinement. In order to study the point-wise convergence

of the pressure coefficient as element size decreases, all other dis-
cretization and solution parameters were held fixed while element size

i 5 was varied. Figure 13 shows a typical discretization of the flow-

; ‘ field governed by parameters NDX, NDY, and NDXA which are defined in
! the figure. The farfield boundary was located at ¥mgx = Ymax = 1.50. .
Element refinement was done 4 ways:

(1) All elements in the flowfield were imiformly decreased

i in size.
. (2) Only elements above the airfoil were decreased in width
3
F only while those for |x) Z4,$ were held fixed (see Fig 13).
T,' (3) Elements for |X|Z0.S were refined in width only while
S

all other discretization parameters were held fixed

| (i.e. changing AX for [X/20.Svwhile &% for |X] £ 0.5
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and &Y for y2o are fixed; see Fig 13).
(4) All elements were refined in height (i.e. giving more

layers of elements) while all other discretization

parameters were held fixed.
Figure 21 shows the effect of uniform element refinement (i.e. proce-
dure 1 above) on the solution for the pressure coefficient for Mg=0.
The exact curve computed from thin-airfoil theory is also shown for
comparison purposes.

Two observations can be made from Fig 21. First, the step function
for each of the approximations intersects the exact curve at some point
in the interval of the step size. Thus, even the approximation from
the most coarse discretization is not unrealistic. Secondly, the
point-wise error over most of the chord decreases with a corresponding
decrease in element size. In an average sense, the error in pressure
decreases with element refinement. Further, the point-wise convergence
at the midchord appears to be very rapid compared to that at the
leading and trailing edges. The description of pressure coefficient
at the leading and trailing edges improves as the elements become
smaller, but improvement is slower than for other points on the air-
foil. Special finite element treatment may be needed for regions near
the singular points to improve the convergence there. The results in
Fig 21 show that the solution trend is correct, in that, it approaches
the exact solution as element size approaches zero.

Refinement of elements only in the region over the airfoil
profile (i.e. procedure 2) has a slightly different effect on the
pressure distribution than does uniform refinement of all elements

in the flowfield. The coefficients of pressure for refinement of
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discr atization parameter NDXA alone are presented in Fig 22. Note

that the actual shape of the pressure distribution is more well de-
fined with smaller elements due to the step-function nature of
pressure, but the pressure at the mid-point of each step does not
show substantial deviation from the exact solution with refinement.
The greatest change with refinement of NDXA occurs near the leading
and trailing edges where better definition of the pressure coefficient
is obtained as the elements become smaller. The change near the peak
is almost insignificant by comparison.

The difference in the behavior of pressure for the two refinement
procedures described thus far suggests a discretization technique.
First, discretize Ll g with relatively large elements everywhere and
refine the element size until there is little change in the pressure
coefficient at the midchord. Then, for better definition of the dis-
tribution refine only the NDXA parameter. Perhaps an improvement on
this technique would be the use of variable size elements with the
smaller elements located near the leading and trailing edges.

Refining elements beyond the airf»yil leading and trailing edges
(i.e. procedure 3, refining parameter NDX only) has little effect on
the pressure distribution except in the two elements containing the
leading and trailing edges respectively; refer to Fig 23. The varia-
tion of pressure that occurs in these two elements does not appear to
be directly related to the change made in the refined elements. The
fact that CP changes at all is due to the decrease of size in
elements adjacent to the leading and trailing edge elements. It
clearly points out that '"for points farthest removed from the elements

refined, the sialler the change the refinement makes." This "truism'
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is detected in Fig 23 by noting the decreusing rate of change in
pressure as the midchord is approached from either direction.
Refinement of NDY with all other discretization parameters held
fixed (i.e. procedure 4) significantly affects the pressure distribu-
tion as shown in Fig 24. Changes occur rapidly near the peak, but
are slower near the leading and trailing edges. The width of the
elements as well as the height needed to be refined near these points

to improve the resulting approximation,

Incompressible Results

Figure 25 shows a comparison between the finite element solution
for the pressure coefficient and the exact curve computed from thin
airfoil theory. The pressure coefficient is a step function, but when
the midpoint value in each step interval is plotted the comparison
with the exact solution shows good agreement. The finite element
solution was obtained using discretization parameters: Xmax = 1.5,
Ymax = 2.0, NDX = 8, NDXA = 18, NDY = 8.

Another interesting comparison is shown in Fig 26 where the
finite element solution is compared with a finite difference solution
obtained from Ref (40). The finite difference solution was obtained
using a constant grid step size &X = BY = 0.125 everywhere. The
finite element results were obtained using the same step size over the
airfoil surface (i.e. &%, = 0.125), but the other element dimensions

were twice as large as that used in the finite difference calculations

(i.e. AX = 0.25, AY = 0.25). The degrees-of-freedom for the two
solutions were 119 nodes for finite element and 350 grid points for

finite difference. The accuracy achieved by the finite element method
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is clearly better than for finite difference.

Compressible Subsonic Results

The flow is subsonic at all points in the flow domain _Q-F
as long as the coefficient of ¢/ xx in the governing differential
equation remains positive. When the free-stream Mach number is in-
creased slightly above a critical value, then the coefficient of ¢;XX
becomes negative in a small subregion of {Lf and transonic flow begins.
Before discussing results for compressible subsonic flow, the conver-
gence behavior of the iterative solution algorithm for Mach numbers
through the subsonic regime up to the onset of transonic flow is con-
sidered.

Convergence of Iterative Scheme. Recall that the approximate

solution of the governing differential equation was written in
iterative form as expressed by eq 58. Also recall that convergence of
the iterative solution scheme was governed by the criteria specified
in eq 45. For € = 0,5 X l-b‘, the mumber of iterations required to
achieve convergence of eq 58 is presented in Figs 27 and 28 as a
function of Mach number. For the data in these figures, solutions
were started by setting all nodal values of potential equal to zero.
For low subsonic flow @.o_t_-_ My < 0.5') the number of iterations re-
quired for convergence of the iterative scheme is five or less.

Fewer iterations were required when solutions were started from better
initial guesses. For example, fewer iterations than given in Fig 27
were required to obtain a solution for Mep=@.§ when the iterative
scheme was started from the solution for M= 0. &, As the Mach
number was increased to Mg,= 0.8 the slope of the convergence curve

increased, but convergence still occurred in seven or less iterations.
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At approximately Mgy = 0.85 a sharp increase in the mumber of
iterations occurred as indicated by the vertical segment of the curve
in Fig 27. At this Mach mmber a small supersonic bubble has formed
in the flow above the midchord of the airfoil and the equation has
locally changed type. For Mgy= 0.85 the iterative solution scheme
no longer converged in the sense of eq 45 for small values of € .

What happened to the solution of the potential function for each
iteration is illustrated in Fig 28. 1In this figure the percent change
in the nodal value of the potential function at the midchord was com-
puted from A¢:'(¢nt‘ 4)“) / d)ﬂ Hl and plotted as a function of the
iteration mumber for Mach numbers from 0.50 to 0.86. The solution was
initiated by setting the potential function equal to zero at all nodes.
As observed in Fig 27, for low subsonic flow the potential converges
rapidly, but for Mg=0.85 the potential function does not converge
at all. Initially the solution gives the appearance of converging as
it does for lower Mach numbers, but then an iteration is reached
(iteration 6) where the apparen: convergence trend begins to reverse
itself. This behavior occurs because the governing equation has locally
changed type from elliptic to hyperbolic in a small region above the
michord. Further iterations produced what appears to be a diverging
solution scheme. In actuality the solution does not diverge, but
cycles back through the 'bucket'’ shape shown in Fig 28. The behavior
for larger Mach mmbers was similar to that shown for Mg=0.85. In
general, the 'bucket' shape moves to the left and upward indicating
that fewer iterations are required before the solution develops to

the stage where transonic flow occurs.

Comparison of Results. First, the distribution of pressure

95

.
K




15

Mech
Number
0.50
0.70
0.80
0.82
0.84
0.85
0.86

Percent Change of Potential (Midchord)

eE P OOCOY

[ 3 B

8 10 12

v

16

1 \\\7 v O —dA
14

-
6

s

+—
‘ 2

Number of Iterations

% Figure 28 - Convergence Behavior of Potential Function
at the Midchord as Fimection of Free-Stream
Mach Number

.

-t




Tl MRS S MBI s 55 & Ly, D B MR ek i e Tl A TN S ERNG N 2 R T e Shet . B AL

i8N coefficient for a given discretization is shown in Fig 29 as a
function of Mach mmber. The distributional shape of CP is slightly

different than predicted from linear theory, where QP scales with

=i/
Mach number by a factor (|- N{;) . The departure from linear theory

is not significant but is attributable to the presence of the nonlinear
term in the differential equation, which begins to become significant
for Mach rumber near Mco: 0.8. More discussion of nonlinear effects
is included in the next section. Figure 30 compares finite element

results with experimental data obtained by Knetchnel (Ref 39) for

M“‘—‘ 0.707 . Good agreement exists over most of the airfoil. For
comparison purposes a finite difference solution (Ref 40) is given for
Mg, = 0.7 (vhich is 1% lower than for other results). In addition,
the exact-linear, thin-airfoil-theory results obtained by scaling the
incompressible solution are shown. The farfield boundary locations were
the same for both the finite e¢lement and finite difference approxima-
tions (Xmax = Ymax = 1.5). However, the number of nodes used for the
finite element method was more than an order of magnitude less than the
number of grid points used for the finite difference method (i.e. 225
nodes compared to 8514 grid points, respectively). The finite dif-
ference solution does not compare with the experimental data as well
v as either the finite element or the exact linear solutions.

Figure 31 compares Cp distributions for Mg,z O 8 obtained
from the present finite element solution, finite difference solutions
(Ref 40), and from linear, thin-airfoil-theory solutions. The
difference in pressure distributions between the solutions from
linear theory and the two numerical solutions based on nonlinear theory

| are readily detectable. Differences between the finite element and

Nn;f _— _MM
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finite difference results occur for the entire distribution. These
variations are due to the inherent difference in approximations achieved
by each method and, perhaps to a lesser extent, the finer mesh size

used for the finite difference solution.

Transonic Flow

Iterative Behavior of Solution Scheme. As discussed previously,

the iterative solution algorithm does not converge. as it does for sub-
sonic flow, once a supersonic bubble larger than half of an element
forms in the flowfield. Figures 32 and 33 show solution results after
each iteration for Mach mmbers equal to 0.84 and 0.86 respectively.

The solution shown in Fig 32 converges in the sense of eq 45 after 12

¥ . The peak Cp is slight-
ly above the critical value of C: = 0,347, but the supersonic bubble

iterations for a tolerance of € = 0.5% 10

only engulfs approximately half of the element which straddles the
point of maximum thickness. When the Mach mumber is increased to 0.86
the solution fails to converge. Figure 33 shows what happens to the
solution for the first 6 iterations. The solution remains symmetric
(shockless) and after 3 iterations, more than one element is contained
in the supersonic bubble. Solutions for further iterations (except
iteration 8 which goes off the page) are shown in Fig 34. The spike at
the midchord continues to increase until iteraticn 9, when it changes
sign and creates a crevice at the midchord. Further iterations result

in the fallen spike being rebuilt, which eventually occurs, and then

the process is repeated. Thus, the solution is oscillatory, and although
it never converges neither does it diverge. If the Mach number is in- 8
creased further, violent oscillations occur and eventually the solution

diverges.
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Figures 32-34 were included only to illustrate the behavior of

the solution at the on-set of transonic flow when the finite element
solution is obtained as if the problem was elliptic. When the co-
efficient of ¢' x x 1in the differential equation becomes negative,
the differential equation changes type from elliptic to hyperbolic
which forms the supersonic bubble in the flow., Since elliptic dif-
ferential equations are fundamentally different than hyperbolic ones,
then formulations and algorithms suitable for elliptic equations are
not expected to be valid for hyperbolic equations. At this point in
the solution scheme, the ''upwinding" techniques described in Chapter IV
were employed.

Upwinding Techniques. The upwinding techniques that were reported

in the literature, as described in Chapter IV, were tried for the tran-
sonic flow problem. None of the reported techniques were able to
stabilize the iterative solution scheme, and a discussion of the
solution behavior for each of these techniques is omitted. In general,
when they were employed one of two things happened. First, for most
cases considered, the application of the upwinding technique caused the
iterative solution scheme to diverge immediately. Secondly, for a few
cases where the solution scheme converged, it converged to a solution
that was not physically meaningful. Due to the inability of the
reported upwinding techniques to stabilize the solution scheme, other
upwinding schemes were sought. As a result, the new proposed up-
winding technique was developed.

Recall that the new upwinding technique described in Chapter IV

modifies the finite element formulation to account for the hyperbolic

character of the equation for those elements within the supersonic
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bubble. The behavior of the upwinding procedure is governed by two

parameters R and ¥. Equation 62 gives the modification of the
finite element formulation of the governing equation by these two
parameters for elements within the supersonic or hyperbolic bubble.
The behavior of the solution as a function of these two parameters is
shown in Figs 35 to 39. For the airfoil considered, the rnumerical
values of R and U fall somewhere in the ranges: 02 R € 0,3 and
0 U0 ¢

The behavior of the solution (pressure distribution) as a function
of upwinding parameter U for fixed values of M_and parameter R is
shown in Figs 35-37. Although a different value of R or M,is held
fixed in each of these figures, the effect of U on the solution is the
same in each case. The function of VU is to change the symmetry of the
flow. If Uis set equal to zero (corresponding to the upwinding scheme
not being employed), then the distribution of Cp remains symmetric
about the midchord, as shown in Fig 33. Note in Figs 35-37 that for
increasing values of U the distributions are skewed downwind. Pressure
gradients become greater on the dowrwind side of the peak value, in the
vicinity of an expected, weak compression shock. Thus parameter U
not only alters the symmetry of the pressure distribution, but it also
appears to capture the behavior of weak shocks by permitting relatively
large discontinuities of velocity to occur aft of the peak pressure.
This behavior is particularly evident in Fig 37 for U=z &.40.

The behavior of the solution (pressure distribution) as a function
of parameter R for fixed values of UV is shown in Figs 38 and 39. The
distribution of pressure coefficient is not substantially affected by

changes in parameter R except near the peak. In this region increased
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values of R produce larger peak pressures which means aft of the peak

larger gradients of pressure are produced. Thus parameter R also
appears to be contributing to the numerical mechanism of capturing the
weak compression shock. Recall that the function of R is to retain
part of the nonlinear term on the left-hand-side of the governing
equation and to subject the remaining part to the upwinding operation.
Judging from the results in Figs 38 and 39 it may be necessary to keep
part of the term on the left-hand-side of the equation, which means
that an inversion must be done for each iterate. If the entire non-
linear term is treated as a force (i.e. R = @ ) then accuracy may be
sacrificed. The value of R for the cases considered range between
0.2 and 0.3 for best results.

If R is arbitrarily selected, say R= Rq , for given values of
Mg and U, then one of three things could happen. First, if Rgqis
picked too large the solution will either diverge or oscillate about
some solution as demonstrated in Figs 33 and 34. For this situation
not enough of the nonlinear term is subjected to the upwinding operation
to permit convergence of the itérative scheme. Secondly, if Rqis
picked too small, then too much of the nonlinear term is altered by
the upwinding process. As a consequence, even if the solution
algorithm converges, the solution may not be as close to the true
solution as it could be for a larger value of R, . Thirdly, if Rais
appropriately chosen, the iterative scheme will comverge to an accurate
solution which correctly describes the physics of the problem as
shown for the examples in the next section.

In general. the values of R and U depend upon the airfoil shape,

Mach number, and the angle of attack for lifting airfoils. When
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¥ values of R and U are correctly chosen, then convergence occurs rapidly;
usually less than 15 iterations are required. If, on the other hand,

they are not correctly chosen, then the iterative scheme will not

"

converge. After a couple of iterations the scheme will reach a point

of divergence which indicates that the other values of R and V should

be selected for the case being considered. Unfortunately, there are

no known analytical expressions which select the best values of R and

SR

! \J for specific airfoils and flow cases. The values can be determined
i iteratively as suggested by the procedure in Chapter IV. This proce-
: dure first requires that ''ballpark' values of R and V be found which
+ AR

permit convergence of the iterative scheme. Next, R and U are ''fine

R 3

tuned" to select the 'best" possible values.

Comparison of Results. Finite element solutions for transonic

- flow over a 6% - thick parabolic-arc airfoil are compared with experi-
mental data obtained by Knetchel (Ref 39), finite difference calcu-
lations of Olsen and Batill (Ref 40) and also those of Olsen (Ref 60),
and with finite element solutions of Akay (Ref 24). For M, = 0.908,
finite element solutions for the pressure coefficient are presented
in Figs 40 and 41 for seven discretizations of the flow domainfg, as

specified in Table VI.
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Domain Discretization Parameters,

Table VI

For Mg = 0.908

Grid NDX NDXA NDY Nodes
1 8 5 6 98
2 8 7 7 128
3 8 7 9 160
4 6 14 9 210
5 6 9 13 224
6 6 9 13 224
7 6 11 11 216

By comparing the solutions for the pressure coefficients given in
Fig 40 with those given in Fig 41, a significant difference in behavior
is noticed only in the vicinity of the expected, weak compression
shock. 1In Fig 40 for grids 1-3 at a location eight-tenth of a chord-
length from the leading edge ( X g = ©.8 ), a comparatively large jump
in Cp(Yy=0) occurs between adjacent elements. This behavior occurs
naturally in the solution process and is associated with the occurrence
of a weak compression shock which occurs in the flow domain to permit
the fluid in the supersonic bubble to return to subsonic conditions.

The occurrence of the jump at X g= 0.8 was not forced by imposing
any shock jump conditions. but it is an inherent consequence of the
potential formulation of the problem, the finite element approach
selected to solve the problem, and the use of the new upwinding scheme
governed by parameters R and U. Since the velocity potential fumction

is being solved for, and since elements were selected which insure only
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continuity of the velocity potential function across inter-element
boundaries, then jumps or discontimuities in the derivatives of the
potential function (i.e. velocities) across inter-element boundaries
are inherently expected to occur. From small-disturbance theory, the
pressure coefficient is proportional to the velocity in the x-direction,
thus a corresponding jump of pressure between elements. The signifi-
cant part of this behavior is that the jump is of sufficient magnitude
to allow the flow to change from supersonic to subsonic conditions by
crossing an element boundary line, thus an ideal shock of zero thickness.
This particular behavior occurs only when the discretization is arranged
in such a mammer that a node occurs at the location where the weak

shock would like to impinge upon the airfoil.

The solutions presented in Fig 41 are notably different in the
vicinity of X,_g = 0.8 . For these solutions the discretization does
not place a node at X.g = 0.8 ; the discretizations straddle that
point instead. Since the shock should occur at X, g = 0.8, then it
must occur within an element rather than on its boundary. However,
there is no numerical mechanism for the shock to occur within an
element, as there is between elements. Consequently, two jumps are
required to return the flow from supersonic to subsonic conditions.

For these discretizations the solutions smear the shock over the span
of one element and two successive inter-element boundary locations.

The difference between solutions given in Fig 40 and those given
in Fig 41 is more graphically demonstrated in Fig 42, where solutions
for grids 3, 6, and 7 are compared. The symbol at the peak of each
distribution indicates the location of the expected weak shock, which

is denoted by the vertical arrow at X,g = 0.8 . All other symbols
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are plotted at the midpoint of the interval (i.e. midway between

nodes) as described previously. Note, as the elements which straddle
the shock become large (i.e. grid 6 as compared to grid 7), the more
the solution is affected in the vicinity of the weak shock. It appears
that smearing the shock over a larger element tends to decrease the
magnitude of the peak pressure, as well as, affecting the magnitude of
the jumps required to return the flow to subsonic conditions. Although
smearing does not provide the best approximation, in terms of describing
the physics of the flow, it does provide an acceptable approximation
without the use or need of shock elements. Better approximations can
be obtained by altering or "fine tuning' the discretizations to provide
solutions similar to those obtained from grid 3.

The new upwind method appears to exhibit characteristics common to
both shock ''capturing'' and ''fitting" techniques. The location and
strength of the weak shock can be obtained without fitting the discreti-
zation in the sense described. However, if better approximations are
required, then the discretization can be iterated upon to fit the
element boundaries so they coincide with the location of the shock.
From the approach taken in this study, the shape of the shock is
restricted to a vertical line segment (i.e. parallel with the y-axis).
In general, the shock may be inclined to the vertical, although it
would remain straight. Discretizations could be devised by rotating
segments of the grid to fit the shock between adjacent elements for
such cases. Neither of the situations represented in Fig 42 would be
possible without the use of the new upwinding technique. Without its
use the pressure distribution would remain symmetric with respect to

the midchord, and the solution algorithm would not converge.
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Convergence is possible only because the physics of the flow is modelled
by excluding the dowrwind influence on the solution at upwind nodes.

Figure 43 compares the finite element solutions for no smearing of
the shock with the finite difference solutions and with experimental
data. The two finite difference solutions correspond to a constant
grid size (Ref 40) and a variable grid size (Ref 60), respectively.
The latter solution was obtained for smaller step sizes near the leading
and trailing edges and in the vicinity of the expected shock. The
finite element solutions were also obtained from both constant (grid 1)
and variable element sizes (grids 2 and 3). For the variable element
discretizations, smaller (more narrow) elements were placed near the
leadine and trailing edges. In addition, solutions were attempted for
discretizations that were refined only in the region where the shock was
expected to occur. This discretiation resulted in a grid where
"needle like' elements were placed adjacent to elements of aspect ratio
near unity. The solution algorithm for such discretizations did not
converge and the idea of using variable size elements to assist in
"capturing'' the shock was abandoned. It is believed that the upwinding
technique is applicable only for elements of constant size throughout
the supersonic bubble, and it works best when the aspect ratio of the
elements is near unity. Any substantial departure from a uniform grid
particularly in the center segment (refer to Fig 13) leads to conver- l
gence problems in the iterative solution process.

Figure 44 shows a comparison of pressure distributions obtained
from two finite element solutions using different upwinding techniques.

The finite element solution presented in Fig 40 for grid 3 is compared

with the solution obtained by Akay (Ref 24). His upwinding technique
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differed from that used in this study as described in Chapter IV. It

consisted of replacing the velocity %?.e by (|+8) 32e+6 3:: , where
%k is the velocity upstream of element € . The value of @ was taken
to be 0.20. The results of this study agree with the trend of the ex-
perimental data and the finite difference solutions much better than
do Akay's predictions. It is believed that the difference in upwind
techniques, rather than formulation methods is what accounts for tne
variation between the two Cp distributions.

Figure 45 compares the distribution of CP(\j=O) with experimental
data for a 6%-thick parabolic arc airfoil at Mg, = 0.92 . Domain
{l¢was discretized with grid 7 described in Table VI. Upwinding
parameters of R= 0,20 and U = 0. Y0 were required to obtain conver-
gence. FEssentially the same behavior observed for the solution for
M = 0.908 applies to this case. The shock is smeared over one
element and the pressure distribution agrees with the trend of the
experimental data.

In general the new upwinding technique gave acceptable results.

A number of other upwinding techniques described in Chapter IV were
tried. None of these gave satisfactory results, although each tech-
nique did alter the symmetry in the flow. In most cases the initial
application of the upwinding technique resulted in a dramatic change in
the flowfield velocities. As a result. the solution scheme either
diverged after one or two iterative steps, or it oscillated without
regularity about some solution. The possibility exists that these
upwinding techniques could be modified to provide successful application,

but no such alterations were found in this studv.

122




Cp(y=0)

-0.6

~-0.4

-0.2

0.0

0.2

0.4

Thicl Parabolic-Arce
Mo (0.4920
A Finite Elerent, Grid 7

- - = xperimental Data, Ref (39)

,AA
/‘ \
< \
A \
/
A \
d \
A \
* / A\
- Cp Q \
/ \
/ \
/ \
/ 1 1 L \ -1
/‘ 0.25 0.50 0.75 \ 1.0
/ Distance From Leading Edge \
/
! A

Fionre 25 - Finite Element Solutions,
R+ 0.20 and U = 0,40

T P S NS




VIT Summary, Conclusions, and Recommendations

The Galerkin Finite Element Method was used to obtain approximate
solutions of the steady, transonic, small-disturbance, velocity po-

tential equation for flow over a circular cylinder and thin airfoil.

Circular Cylinder

Incompressible Flow. One non-conforming and two conforming sector

elements were used to solve the problem of incompressible flow without
circulation over a unit circular cylinder. The non-conforming element
was rejected because the solution error became significant as element
size was refined. It gave accurate approximations only for coarse
discretization of the flowfield. Velocity distributions calculated
from the two conforming elements agreed well with the exact solution.
In general, the new sector element gave more accurate solutions than
the other sector element, which was based upon a conventional bilinear
polynomial approximation. The new element was developed from a trial
solution using rational fimctions. For incompressible flow over the
cylinder the radial size parameter of the new element did not have

to be refined to achieve convergence as element size approached

zero. The only refir~ment required for convergence was the angular
width of the element, which represents an improvement over the conven-
tional conforming element. This element required refinement of both
size parameters with the aspect ratio held fixed (equal to one) to
achieve convergence. Consequently, for a desired degree-of-accuracy
more elements and larger degrees-of-freedom were needed for the
bilinear element than for the new element. This translated into more

computer core-storage requirements and longer processing time to solve
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a given problem.

The differences between the two conforming elements used for
this problem showed the advantage of using elements with trial
functions which resemble the expected form of the solution. This
idea could be extended to the airfoil problem, or for that matter, any
problem, providing the behavior of the solution is known. The solution
for the airfoil problem at least in the farfield behaves like !fy . It
may be possible to use rational trial functions (perhaps raised to
some power) to épproximate the solution and achieve an element with
improved characteristics.

The utility of the new element is not fully realized for solving
circular cylinder problems. but can be realized when solving airfoil
problems. The sector element could be used to discretize the flow-
field from one chord-length or other specified radius on out to the
farfield boundary. Since the trial fumction for the sector element
automatically satisfies the infinity condition (as v-eo ), then the
boundary could be extended as far as necessary to approximately
satisfy the boundary condition there. It is also possible that an
infinite element could be developed from this element by neglecting the
polynomial terms in the trial fumction. These elements could prove
quite useful in this respect since a farfield boundary condition
given by eq 50 would not have to be used, and the dreadful nonlinear
term that requires integration over the flowfield would not have to
be evaluated.

Circulation. The two conforming sector elements were used

to solve the problem of incompressible flow with circulation.

A splitting technique was employed which permitted the Kutta or




stagnation condition to be enforced in a convenient mamner after

the elementary or component solutions were obtained. Both elements
predicted results accurately. In general, the new element was more
efficient and required less refinement for a given degree-of-accuracy.
The circulation could be predicted with its use to within 0.0037% of
the exact value for coarse discretizations. This degree-of-accuracy
is possible only when the discretization is constructed in such a
mammer that the stagnation point is located at the angular centroid
of the stagnation element. As the stagnation point is moved toward
the edge of the element the error in circulation increases, and
reaches a maximum when the stagnation point lies on a node. Velocity
distributions were accurately predicted by both elements whenever the
circulation was correctly predicted.

Compressible Flow. The new sector element was used to solve the

small-disturbance equation for compressible, potential flow over the
cylinder. The equation was locally linearized by an iterative solu-
tion scheme which converged rapidly for subsonic flows. The scheme
failed to converge for transonic flows when the supersonic zone
engulfed at least one complete element. Predictions of the critical
Mach mumber and subsonic velocity distributions compared well with

known results.

Thin Airfoil

Bilinear rectangular elements were used exclusively to discretize
the flow domain for the airfoil problem. Cases of incompressible flow
and compressible subsonic and transonic flows were considered for a

nonlifting symmetric airfoil. The governing nonlinear equation was




P S VU

Jreindhibdi &

S

LR
PP SRR SO

. Chmng

A

SP i ST o N il ; < g “ e - ) i e

written as a sequence of linear equations with variable coefficients
and was solved by an iterative process. The iterative solution al-
gorithm converged very rapidly for low subsonic flows. As the Mach
number approached a critical value the rate of convergence decreased.
For Mach numbers slightly below critical, convergence still occurred
in less than twelve iterations. Convergence continued to occur as the
Mach number was increased until more than half of one element became
engulfed in the supersonic region. At this point the iterative scheme
oscillated about some solution and diverged for still larger Mach
numbers.

To achieve convergence for transonic flows (mixed elliptic-
hyperbolic), the finite element formulation had to be modified to
account for the proper zones of influence for those elements within
the supersonic (hvperbolic) region. Several modifying methods in-
cluding those reported by other investigators were tried. All but
one method failed to produce the desired result. This method is a
new upwinding technique governed by two parameters which exclude the
influence of iterative downwind forces on the solution at upwind
nodes. The new upwinding technique not only keeps the iterative
solution scheme from diverging, but it also captures the weak com-
pression shock which forms in the flowfield.

Accurate approximations for pressure distributions were obtained
for all flow regimes from incompressible to transonic flows. The
simplifying assumptions and approximations used in this study
represents an exceedingly basic approach to an extremely complex
nonlinear problem. One of the original intents was to demonstrate

whether a simple approach was acceptable. The finite element
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techniques used in this study represent approaches that are about

as basic as one could take. Excluding the use of linear triangular
elements, it would be difficult to conceive of a more fundamental way
to solve the nonlinear small-disturbance equation than the way it was

done in this study. More complicated problem formulations as well as

higher orders of approximation could be used. Some of these approaches

are described in the remaining section.
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Recommendations for Future Work

Further development of finite element methods for airfoil analysis
could take numerous directions. Several extensions to the present
effort could be made, as well as, additional approaches to the problem.
Future work will undoubtedly be conducted in the areas of: problem
formulation, element development, application of existing higher-order
elements, singular treatment of the leading edge, unsteady analysis, and
special treatment for the mixed or transonic problem. Each of these
areas will be discussed briefly with specific suggestions for develop-
ment programs.

Problem Formulations. For steady flow three additional inviscid

formulation techniques could be investigated. They are the velocity
formulation for small-disturbance theory and both velocity and potential
formulations for large disturbances.

The small-disturbance potential equation used in this study can
alternatively be written as two equations in terms of the disturbance

velocities (u,v) as

[-Me-Mu () W] Uy + 5y = o (66)
and

U;y - \’7! =0 (67)

Boundary conditions are

Vo= (t-t-u)—j—-ﬁ- (68)
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(u,v) —> 8 as v —> o (69)

These conditions are Dirichlet conditions which are imposed upon the

trial functions. The manner in which the boundary conditions are

treated using this formulation technique differs from the small-
disturbance potential formulation used in this study. The present
boundary conditions are of the Neumann type which are not imposed on
the trial function. They are, instead, enforced indirectly by the
formulation procedure.

The velocity formulation with the use of linear elements as
used in this study would provide pressure distributions along the air-
foil contour that are linear and continuous, without jumps between
elements. This would be an improvement over the potential formulation
which results in pressure distributions that are step-fimctions for
linear elements and step-linear-functions for quadratic elements. To

achieve continuous pressure distributions from the potential formu-

lation Hermite polynomials would have to be used as approximation
functions. Along with the improved accuracy of the velocity formula-
tion over the potential formulation comes the disadvantage that twice
as many degrees-of-freedom are needed for linear element discretiza-
tions. Two unknowns ¢t and V are required as nodal parameters
instead of the single parameter ¢

The other problem formulations which should be further investi-

gated are the full-potential and alternatively full-velocity formula-

tions. The full-potential equation for inviscid compressible flow is
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given by eq 15. This equation could be cast into velocities & and

V" and used in conjunction with the irrotational condition. These
formulations would not be limited to slender aerodynamic bodies. since
large disturbances are not excluded by assumption. However. non-
linearity is more severe than for the small-disturbance equation which
will create numerical difficulties. As a first approximation, at
least for subsonic flow, the equation could be cast into an iterative
Poisson equation. Perhaps an upwinding technique similar to that used
in this study could also be tried for supercritical flow. Other
solution possibilities exist which should be investigated.

Higher Order Elements. A direct extension of the present study

is possible by using higher order elements to approximate the solution.
Initially, only those elements along the airfoil contour should be

made of higher order with all other elements remaining bilinear. This
arrangement would permit an improvement in the description of the
pressure distribution along the airfoil contour without significantly
increasing the total number of nodal parameters. As a further extension,
all elements could be of higher order. Results from these solutions
could be compared with those of this study to determine the rate of

convergence. (@ -type convergence).

Boundary Conditions. Extensions to the present solutions could be

made by applying the tangential boundary condition along the airfoil
surface rather than along y= oY. as done in thin-airfoil theory.
This improvement is not expected to alter results very much for
thin-airfoils, but would be necessary for thick ones. A number of
approximations are possible. First, the actual boundarv shape could

be approximated by suitably shaped elements with the boundarv condition
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applied along the appropriate element edge. Secondly, isoparametric

elements with one side shaped to approximate the contour shape are
possible. Of these types several possibilities exist depending on
the order of the element chosen and the actual contour shape.

Arbitrary Thin-Airfoil Shapes. For the present approach a com-

putational subroutine needs to be developed to extend the present
analysis for an arbitrarily shaped airfoil. Two extensions are re-
quired to accomplish this goal. Firsr, the nonlinear form of the
governing differential equation will have to be included for lifting
flow. This addition will also require the inclusion of an upwinding
technique when the flow is transonic. These additions will follow the
analysis presented for the symmetric transonic case identically, ex-
cept the lower half-space will be included. As a consequence, inte-
gration along the lower airfoil surface will have to be included.
Secondly, an algorithm will have to be added to the subroutine to
compute the finite element vectors and matrices that come from the
boundary integrals along the airfoil profile. These computations will
have to be made from normalized airfoil profile coordinates. Since the
boundary integrals depend on the airfoil slope then a procedure to
accurately describe the slope from profile coordinates is needed. For
a family of airfoils which can be defined by an equation with perhaps
variable coefficients the integral can be computed exactly (numerical
integration may be easier). A separate routine would be needed for
each equation (family) type with the coefficients as input parameters.
New Flements. An interesting study would be to attempt develop-

ment of new elements for compressible flow problems which have

properties similar to the new element used in this studv for
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incompressible flow about a circular cylinder. The first attempt might

be for the circular cvlinder: although, the thin-airfoil may be easier,
due to the decrease in nonlinearity. Trial functions should be at-
tempted which resemble the form of the solution. For the cvlinder
problem, forms with ('/ri%ndght be attempted where 2 is variable. For
the airfoil problem, forms with (!/ x)?and ('/E y)?—could be tried. Per-
haps, terms which vary as the farfield expression [i.e. x/( x’f-(?,yﬁ]

could also be included.

Shock Elements. An area which has not been successfully treated

with finite element methods for 2-D problems is the correct treatment
of shock waves. Shock fitting techniques could be developed, but a
better and more elegant technique would be to develop a ''special’ shock
element to capture both the location and strength of the shock. Such
an element would have to be constructed from discontinuous fumctions.
Since the location of the shock is not known a priori, the element
would have to be sufficiently general to exclude shocks if they do not
appear and describe their strength and relative location within the
element when they do appear. These ''special'’ elements would be used
only in the region of anticipated shock occurrence.

Singularities. For airfoils with sharp leading edges or other

slope discontinuities along the contour there will be local singularities.
Rather than discretizing these regions with extremely small elements to
describe the rapid change of behavior, a local subregion could be
isolated to treat the singularity separately. The use of ''special

shape fimctions which describe the singularity near the singular point
could be included in the finite element analysis. This technique has

been done in applications of other singular problems, such as the stress
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concentration near a crack tip.

Unsteady Analysis. Chan's et. al. work is the only extensive un-

steady analysis to appear in the literature. Additional finite element
solutions for this problem are required. A number of approaches and
formulation procedures are possible. One particular approach which
should be tried for the small-disturbance equation is to assume that

the potential can be expressed as

(%Y, t) = Ni(XY) P:(t) (70)

The spacial shape functions N'_' ()()y) are the same as those used for

the steady problem. What is different is the nodal parameters ¢‘- (t)
are functions of time. Instead of obtaining a set of algebraic
equations to solve, a set of ordinary second-order differential equations
will result for the nodal parameters. For small oscillations about the
mean steady position these equations will be linear and can be solved

by existing methods.
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Appendix A
Shape Functions and Elemental Equations
for Sector Element (1)
This appendix contains a description of how shape or basis

functions are derived from assumed trial functions. The description
primarily pertains to elements used to solve the potential flow pro-
blems formulated in Chapter III for the circular cylinder. This appendix
also contains the derivation of finite element equations for the symme-

tric flow case when sector element (1) is used.

Shape Functions

In general, when a continuum problem is solved by the Finite Element
Method, the contimumm is divided into a finite number of elements which
are commected at discrete points situated on their boundaries called
nodes. The continuum which has infinite degrees-of-freedom is replaced
by a finite number of unknown nodal parameters. These parameters are
nodal-point values of the solution function or its derivatives, de-
pending upon the complexity of the approximation desired. Between nodes
(i.e. inside an element) the solution function is approximated by an
assumed functional relationship which can be expressed in terms of the
unknown nodal parameters. The approximating function (trial function)
can be written as a linear combination of the shape functions and the
unknown nodal parameters. For example, consider the incompressible flow
problem described in Chapter III. An assumed trial function for the

sector element shown in Fig 3 can be written as

qSe(r,e) = NJ-(r,e) ¢J.e (A-1)
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where I\{J(Y; 8) are the basis functions and é} the nodal value of the
solution¢ at node J' . The repeated index J implies sumation from
j: l,7*+,4. 1t is immediately apparent that the shape function should

have the property that
. , . — . A-2
NL ( (:| , @ J ) - S“r J (4-2)

where S‘:J is the Kronecker delta. For simple elements it is often

easy to select a functional form for the solution and witn the use of
the above property simply write down the basis functions. To insure
that the guessed form produces a conforming element, the required con-
tinuity conditions have to be satisfied. For more complicated approxi-
mations the guess technique may not work very well, and a more direct
method will have to be used (Ref 59). When using the direct method, the
assumed trial function must be written with as many undetermined con-
stants as there are nodal parameters in the element. It could be ex-

pressed as
¢(V, 8) = G((/ e,Q,, -, a") (A-3)

’
where ((,’9) are independent variables and the (s are undetermined con-
stants. What is done for the Finite Element Method is to express these
constants as functions of the element geometry and the unknown nodal
parameters %", (J =), n) . This process is started by first
writing eq A-3 at each node to give a system of r1 equations expressed as

A

= G4 oo

The constants are expressed in terms of the nodal parameters by
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inverting Glj to give
A
’ v . (A-S)
a¢ - G‘J ¢J

Substituting the constants into the trial function, eq A-3, and col-
lecting terms will produce an expression in the form of eq A-1.

To illustrate the direct process, consider trial function (1) for
the sector element shown in Fig 3. Trial function (1) is given in

Chapter III by eq 35 as

Y (XY -)
¢(|',6) = Q, + b'-ﬂ%f_ +C| +a|6 (35

Expressing ¢at each of the nodes gives a system of 4 equations for the

4 unknown nodal values of ¢ . These equations are expressed in matrix

form as
(&) Pl SinBa LS B 17,
P [ a a
¢' Ta Ya Ea .
n &
¢z ] Sl:b a CDYS- T8 N b,
<7 : y S
¢ | 3n8p, oS8 g || ¢
3 e 188
dq { Sin By CoS B8y 6, 3,
\ J - a Yb J .

Inverting this matrix, substituting the constant into eq 35, and col-
lecting like terms of ¢J' will produce the desired form. The resulting

shape functions are
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@sin(6,-6)

N, = rivy B <66‘6)S’.n@
a(<-1)51n ¢
—QSl.n(G‘,-e)
Nz: rIY‘b + °(<95-9) SMQ
Q(ohl)sfn @
~@sin(6-8,)
V. ey + o (6-6a)SIng
g(«x-1) Sin @
Rsin(6-6n)
.- I, ~ (8-62) Sin @
Q(,(—l) Sin @

(A-73)

(A~7b)

(A~7¢c)

(A-7d)




Fytihiniidh

AR IR g
PR ATV S,

Y

|
)
s
!
r
l
-
.'

where @: Gb—g and &= rla/m as defined in Fig 3. It is easily
demonstrated that the shape functions satisfy N‘~ (YJ ) aJ) = S ¢ J
However, further examination reveals that continuity of ¢ across inter-
element boundaries is guaranteed only along radial lines. Along cir-
cunferential lines f is continuous only at the nodal points. The use
of this element for the second order problem of incompressible flow
over a circular cylinder as formulated in Chapter IIT will give a non-

conforming approximation.

Elemental Equations

The elemental equations for incompressible flow over a circular
e ¢ e
cylinder are expressed by eq 30 as K‘:,-éil- s ‘F( for ("'J = e, 4/) .

Stiffness matrix I;.1s given by eq 31 as
J

e
K{,‘ = jge(?\l:'r NJ*,, rre N;)e Nj,e) rdrdo (31)

e
Each element of Ki .l‘ is calculated by substituting the shape functions
and performing the required integration. For example, the K .? com-
e . ]
ponent of K‘:j is obtained by setting ¢= )= | . and substituting

eq A-7a into eq 31. The result is

e‘, Tb 2 2
o= | § o [L5 ~ 25 sinp tos(v,-9) + S0 B |drde
" At | 3 nrt Yb?. Y
o 6, Y (A-8)
ere
A QlA-1) 5112

"
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Integrating and substituting the limits gives

e @ (At +1) 2 Ao )
Ky = m QA=) * Q(a(-*!)?’ 42

e
Note that K,, depends only upon the two elemental geometric parameters
of and B.
B e
The remaining elements of K"iare obtained in a similar mammer to

give a symmetric stiffness matrix of the form

K, Ko Kz K|
e K. Ks Kz
Ko = (4-10)
t
! X, K,
K, |

where
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The constants @ ,b,c are given by

C =

Ba+) v
2(0(-—)) Sm ?

B («-1)

/.
(et-1)*

e

The force vector -F,_' is given by eq 39 as

£ [ n;eoss| d

Substituting the shape functions eq A-7 into this expression and inte-

grating gives

-
-

i

9& =Y, =\

..S}_. [A Sl.n Bb -— B Coseb]

20
sin @ [@ SinB, + C]

DYy

L[ siq(gsin n +e)

+ .,?.(B tos 8, ~ A Sin 85)]




MU, SO

5~_,v

AL < b PP~
LA TET LT T

.F3 = —-:;{Sm @ (8 Sin B, + c)

—%(BLOS 5, - A Sin BQ)]

_fe = =8 \AsinB,-BCos 5&]
Y 2D
- 5‘.“}__‘_@ SmO, + c]

DT

The constants A) 8,L,0 are given by

S{nl@b-—Slh 2.9}___’_@
o N

A=

. 2
g = SinG, - Sin 6a

c = 00395— CoS 6&

o= R (e=1)Sin
— —
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Velocitv Distribution

The dimensionless tangential perturbation velocity W e( ), 9)
along the contour of the cylinder is calculated from the potential

e
function. In element € , ¢(Y,6) is given by eq 28

$(ne) = N;(rne)é: (28)

e
Velocity ue in each element is defined from the potential function by

e L &
Ug = b6
Along the cylinder surface (r: 1)

= e
Ug(1,6) = N¢ g (1,0) ¢ (A-12)

Substituting the shape functions eq A-7 into eq A-12 and evaluating

at vy= 1 gives
e
)

UZ(',B) = ’2”{[3505(66‘ 9)(¢:‘¢ )

+sing(d- £+ - 4)
+ Bcos(6- 9a)(¢ve- q5§ )J (A-13)

where
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| { Appendix B

s Shape Functions and Elemental Equations for
i Sector Element (2) ]

Shape Functions

Consider the sector element shown in Fig 3 and trial function (2)

given by

e
#(r,6) = Q, + b,r+C,0 +dyrO (36)

A AN

From Ref (27) this approximation can be written in the form ¢e-_- NJ'¢.6
J

L]

=}y, 4 where

. Jd -
_ vla- 6, -6
Ne = 7 T B (B-1a)
) V,fa -1 85"6
N, = -
2 o~ | ? (B-1b)
N r/ra.—-l O - Ba
3 oL~ | ? (B-1c)
erk—°( 9—94
Ny = -
Y _— ? (B-1d)

The shape functions could also be obtained by the direct procedure
described in Appendix A. It is easily demonstrated that the shape
functions provide continuity of¢ across inter-element boundaries. Thus,

element (2) is a conforming element for the finite element formulations

described in Chapter II1I.
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Elemental Equations

The elemental equations for incompressible flow over a circular

lind b 0 S b {38 ’
cvlinder are expresesed v eq 30 as K‘,J' 4'5) = 1, ("J =1, 4)_
Stiffness matrix K;j is given by eq 31 as

8, "
‘ )
K = j S(Nt',r N, + 72 NGe N g)rdrde (31)
94 Ya

e
Each element of K;j is calculated by substituting the corresponding
e

e
shape functions and integrating. For example, the K|, component of X _\
is obtained by setting L= j:: | and substituting eq B-la into eq 31.

The result is
6y o

¢ I e ] e [ e edvae
6: 1

(B-2)

Integrating and substituting the limits gives

e Blet+1) . SR /N

T A o

which depends only upon the two elemental geometric parameters o4 and

€

e
The remaining elements of K;J‘ are obtained in a similar manner to

give a symmetric stiffness matrix of the form

K\ KZ K3 kg‘_‘
e Ks K¢ K
Ky = > 3 (B-4)
Ks «,
K,
L J
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K. =

=

b=

¢ =

grating gives

o +xc-¢e

K, =-0-«x¢ +d

K3 = =0/, -xa +d

) R +1)
C(L-1)

X -5

zg(a(-l)

mx

R(<-1)*

=78

Ky = &)z -x*c +e
Ke= 0 +b+0
K¢ = Q2 ~b—-C

ot |
d= zg’(d—‘)

Pl = |
2Q<o(~l>

e =

e
The force vector 'F‘- is given by eq 39 as

e
£,

= S N: Cos & de

&

r
~5inBa —

o

O

r= (‘= {

CoS B — COS Ba

B

The constants &) -+, € 1in the above expressions are given by

Substituting the shape functions, eq B-1.into this expression and inte-

ﬁ

(39



The above expressions define ‘p . for each element € which borders the

e
cylinder surface. For all other elements 'F is identically zero.

[3

Velocity Distribution

The dimensionless tangential perturbation velocity U g (| ) e)
along the contour of the cylinder is calculated from the potential

e
function. In element e, ¢(r,9) is given by eq 28

¢eC r,6) = N:(1,8) ¢e (28)

e
Velocity Ug in each element is defined from the potential function by

e e
Up (T,0) = N,;9<ne)qé.

Along the cylinder surface (v = 1)

e e
Ug (1,8) = N; 5 (1,6) @. (B-6)

For each of the conformal elements this expression reduces to

“:(’;9> = "é—"<¢¢fe" ¢,€) (B-7)

Within element € the tangentiel velocity along rhe contour is a
constant. Thus, between elements there will be a jump in Ug- This
implies the velocity distribution is a step fimction along the contour.

The tangential velocity defined by eq B-7 for element (2) is also

the tangential velocity for element (3) described in the next appendix.

o
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Appendix C

Shape Function and Elemental Equations
for Sector Element (3)

Shape Functions

Consider the sector element shown in Fig 3 and trial fumction (3)

given by
b d; &
¢e<‘09) 2 0y + =+ G0+ = g

e 4
This approximation can be written in the form ¢ = NJ‘% for (J: I« 4)

where

ra/r+l/°( 96"9

T ? (C-1)
fa/r ~\ Bp- 06
N, = 28 -1
(X 'IO"‘ | ? (C-1b)
- -6
N, = Yelr-! OO c-1
3 i/o("' ? (C-1c)

fafr-lfx  ©-Oa

Nq ey T l/o( @

(C-1d)

These shape fimctions are determined from the trial fuimction by the
method described in Appendix A. They can also be deduced from the
shape functions in Appendix B by inverting v and & . This element
represents a new element which to the author's knowledge has not been

used to solve an aerodynamics problem.

Elemental Equations

Incompressible Flow. The elemental equations for incompressible
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flow over a circular cylinder are expressed by eq 30 as

e e

e . 1]
K &5 = T (6j=l ) 30
e
Stiffness matrix K‘J is given by eq 31 a3

6,

S j(N¢ v J!' 7. [,6 Nj,e) Y(JYAQ a1
©p Ya

Each element of K ‘..S is calculated by substituting the corresponding

e
shape functions and integrating. For example the K,, component of K ‘.J'
is obtained by setting ¢= | = { and substituting eq C-2a into eq 31.

The result is

O Yb O(Ya./i’-“
Ki _ SS{' otr;%f:)a)'l £ Q(d*) }&Ae

P

Integrating and substituting the limits gives

e $<°(+|> .‘________' + ___'2_“__9’——-
Ku® Gam 280 8-D® @2

which depends only upon the two elemental geometric parametersof and

The remaining elements of K'- are obtained in a similar manmer to

give a symmetric stiffness matrix of the form




‘ [ B
| Ki Ky Ks Ky
% ;
: e Ks Ko Kz
[ K;j = (C-3)
| Ky K=
1 K,
’ - -
-
; e

The elements of K;: are given by

)
K,= atb+ce Ky= Q)2 -b -c
K,= ~&-oc+d Ke = & +%*-¢
g K3 = ~Qfz +atc -d Ko = @)z -« + e

The constants @, «++, @ in the above expressions are given by

_ R(et+1) _ o+
e Yeray ? % oD
' | , L= _%-3 e = 3=l
- 28 (1) 2@(-1)
c 2
@(x-1)*
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e
The force vector'¥} is given by eq 39 as

&,
e
.F, = gN‘- oS ‘ d8 (39)
[§
e, Y=Ya=|

Substituting the shape functions, eqs C-1, into this expression and inte-

grating gives
Cos O, - (oS Oa |

. ¢
0
. (

- .
- SIn é;Q -

(C-4)

LoS Oy, - CoS Ba

g’ /

LSM 6, +

e
The above expression defines 4{- for each element € which borders the
e
cylinder surface. For all other elements Ja- is identically zero.

Compressible Flow. For compressible flow over the cylinder the

elemental cquations are given by eq 44 as
nt! n
[Kej‘ + LJJ'(¢")J 9?, = i+ 9:8) (C-5)

Matrix k&} and vector ;% are the same as defined for the incompressible
problem. Matrix L{j6¢”) comes from the nonlinear term in the governing
differential equation, and is given by eqs 47 and 48. It can be
expressed as

L«'j(lf’") = - M-:, (1+ K”(H—U)}( A(J' +8( -0 +D¢-J')

-

(C-6)
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where

{f CoSB Ny Ni¢ rdrde

J ) Qe

‘U S‘” N‘,a N;,0 rdrd®

Sine oS8 (. . ,
Ct'-j = S __.....-r-_-—-—~(Nn.,r N.\,O +N"9NJ-)':) rdvd®
Ne

Sine coS8 ...,
D¢ = S """'F'—N‘NA»G) de

3N
€ r<va=|

Substituting the shape functions, eq C-2, into each of these expressions

and integrating gives

FQ. -al a?. -AZ-
o a, -4, 4,

Ay = 2 @ (=~ 1) Ry - 0, €7
ng

where

¢ 3
_ 2 2 Sin2b
2 eb
2
_ 6.8 . 616 L (o-6) _c_is‘_z.e”

2 2

Ba




-

.‘ k _,
Ty . ;
oSN W SR Yor L NPT

« ik 4558

A odn. &..Wm.»mm e MR <= il B

n2b
Q, = [( 6°~ (s +6)6 + 806, -'/2) 5—'—";;2—‘

7 6
78

- (8ot + aze] |
8a

+(6 _ 95+9¢.) cosS26

2.

; 3
Q, = [(e‘-zaae+ei’-'/?_)§’_'_’;%£ + 0

————

[4
&y
5e 0% gﬁ,@_ + -6 cosze_] \
Y < 7
©a
Matrix BCJ‘ becomes
|" -
bo bz "bz - bl
b3 "b3 - b,
ng -
bB b2
b| k
L. .
where
ol~3 %
LTt T sze]
32(,,(-;)?- 2 Y
©q
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1=3% o o
@-) = tXT1 e

* (="

Matrix C'»j becomes




. a0y s
mdeni e oo Ko D

hE" e el
L S

- 6L+ 6 S, +84-28
Crz | Zbt0a _ G +6a-26 (525
’ @"[ 2 8 NG
Sin 26:} \
8
=
B,
y 2 'LE—?—;’—--} 8- 6a o825 - Sin2é
¢ Y 8
6q
The matrix D J comes from the boundary term which becomes
—C‘ o o C, 1
o o ©0 ©
D¢ = (C-10)

The vector 3¢(¢”) also comes from the nonlinear term in the governing

differential equation and is given by eq 49 as

3
z
o5, Y=va=<| |
Substituting the shape functions, eq C-2, into eq 49 and integrating ﬂ

gives

N

3

e mifiexond fo |
(&)

SVJ
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%= = (o o)(2525 + 2502 )

8y

_ Cos36 _ 36059] \
36 §

Bq

4 gos3e 30053]
36 Y

&,

Velocity Distribution

The tangential perturbation velocity tJe(l'e) is derived in
Appendix B for element (2), and is given by eq B-7. For element (3)

the velocity is given by the same equation.

ui(:, )= —é~(¢f - qS,e) (c-12)
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! Appendix D

: Finite Element Equations for Flow Over
i an Airfoil for a Bilinear, Rectangular Element

Shape Functions

The shape functions for the bilinear rectangular element shown in

Fig 46 are given by

N:({;”?) = —z}-—( | + ﬁ {)(H’ 7 ’7) (D-1)

1.7

‘.

- 0
A SV

v

where ¢ = I, ¢+ ¢ . Coordinates (E'O’)i are the local nodal coordi-

nates of node ¢ .

Elemental Equations

The weak solution of the governing differential equation written

in elemental form is expressed by eq 58 as

L L X +%
{_('"Mw)Ais * B = Mg 5 C(87)

2 2 n+l|
+ Mg D) + Mo -!—::I Eij(tﬁ"ﬂ d’J =§ o0 i

where
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Fipure 46 - Rectanpular Element

163




T  emm——

BJJ' = ff N;ly Nj.y dxdy

» Sle
n
‘ CLJ(‘V) = 4’& “ N, N[,x ij dxdy
_‘ fle
df
)1 D‘:J. - g —-;(' N(.' Nj))‘ l d)(
* _
" QQA Jy=o
; FHCHE d;: g %»i« Ni,x N, Nj,x) d x
;Q’: VY=o
d .
f = S —g% Nl[ d x
224 Y=o

The local coordinates (8 '0,) are related to the global coordinates

(X, \3) by the transformation equations

§ = X- Xe 7 = JYe

Q b

(D-3)

Using these expressions the elemental equations can be written in
local coordinates to give

A = %SS Ni g Ny g d3dn

-l -

164




B:

o CON
= =) ) NGy Ny, dady

[ S,
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A — b A"
C(d) = ‘5_?“5« S‘S’Nm Neg Nps dsdny

=l =y

t

d¥f
D = T () N Nm\ d1

N= -1
{
Ei;(¢7) = L d | ij—f—-(ﬂ Nk Ne Njsl d
- ”z-

i
df
-1
%=~
The first three matrices are dependent only on the size of the element

and are not related directly to any particular airfoil contour. Sub-

stituting the shape functions, eq D-1.1into these expressions and letting

M '

¢tz 3= | will produce the following results:
r‘ -l -2 '/z]
J
A = b | | o ="y |
4 3a |




where

Ac g -6l (-4

B::qu[ct"qb 45 qﬁJ

&

= "ai‘{[’é‘(qsl“ﬁz) + ¢, - 433:[




Matrices D J and E; B and vector § . are directly dependent upon

the airfoil contour being considered. These quantities are evaluated
only for elements that share a common boundary with the contour. Thus
for most elements in the domain these qualities are zero.

Symmetric Flow. Consider a parabolic-arc airfoil with thickness

distribution given by
Y= foy = v(1-¢x') 5 x| ¢ Y= (D-4)

For this airfoil the remaining quantities in eq D-2 become

(o o o]

o o 0
D(J = 8T

o © E -E

lo o F —-F]

o o o0 o]
o o O
E;j:BT ¢
o o G -
o H ~H ]
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where

7]

Xe_l_
a

4+

4]

—:T [(qu " QSB)("%‘" +

H =
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Pressure Distribution

For steady small disturbance theory the coefficient of pressure

is given by

The velocity in element € 1is calculated from the assumed solution for

the potential given by eq 57

e
Bix = N & o

From thin airfoil theory the pressure coefficient is evaluated along
N= O+ . Thus for element @ which borders the airfoil contour the

elemental pressure coefficient becomes

e e
Ceo(X,9¥= o*)=-~2 qSM(x,yzo*')

Using the transformation equations between the (X,Y) and (f, 0))

coordinates, given by eq D-3, and substituting eq 57 gives

e e
CP(X,\}:0+) = '—'—%—- NJ')t(i’oy= —l) ¢J

e _ e e
Co(x,y=0") = T (% - %) (0-5)

Within element € the pressure is a constant value which means there

are "jumps' in pressure between elements along the airfoil surface. This

+

implies that the pressure distribution along y=© " is a step function.

For most of the distributions of the pressure coefficient given in
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{ Chapter VI the value of pressure coefficient computed from eq D-5 is

plotted at the midpoint of the element.

‘. Mach Number
F The local Mach number is defined by M= v/a. s where Qg is the local

i ‘ | speed of sound given by

(&) = [~ G ]
The Mach number becomes y 2
W = _ (—z)z — (D-6)
T[’ "(vw)J* My

-—h -
The velocity ¥ is given by V‘-‘(H u,\r). In element €

4.7

AT e mei .

-

<

v
-y

(Vfum) = (1+ éx)* + (By)°

Transforming to local coordinates (5,9)) gives

(VVwalt = [ 1 +7& {CrX( &40 + () F- 4

+ (g fornrd® 6+ 0- s 63

Substituting this expression into eq D-6 will define the Mach number
in element € . For the bilinear element Mach mumber will be discon-

tinuous across inter-element boundaries.
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